期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Vegetation Change and Soil Nutrient Distribution along an Oasis-Desert Transitional Zone in Northwestern China 被引量:5
1
作者 Bao-Ming Chen Gen-Xuan Wang +3 位作者 Dong-Liang Cheng Jian-Min Deng Shao-Lin Peng Fu-Bo An 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第11期1537-1547,共11页
Many studies have focused on soil nutrient heterogeneity and islands of fertility in arid ecosystems. However, few have been conducted on an oasis-desert transitional zone where there is a vegetation pattern changing ... Many studies have focused on soil nutrient heterogeneity and islands of fertility in arid ecosystems. However, few have been conducted on an oasis-desert transitional zone where there is a vegetation pattern changing from shrubs to annual herbs. The goal of the present study was to understand vegetation and soil nutrient heterogenity along an oasis-desert transitional zone in northwestern China. Three replicated sampling belts were selected at 200 m intervals along the transitional zone. Twenty-one quadrats (10 x 10m) at 50m intervals were located along each sampling belt. The vegetation cover was estimated through the quadrats, where both the soil under the canopy and the open soil were sampled simultaneously. The dominated shrub was Haloxylon ammodendron in the areas close to the oasis and Nitraria tangutorum dominated the areas close to the desert. In general, along the transitional zone the vegetation cover decreased within 660 m, increased above 660 m and decreased again above 1 020 m (close to the desert). The soil nutrients (organic matter, total N, NO3^- and NH4^+) showed significant differences along the zone. The soil nutrients except the soil NH4^+ under the canopy were higher than those in open soil, confirming "islands of fertility" or nutrient enrichment. Only a slight downward trend of the level of "islands of fertility" for soil organic matter appeared in the area within 900 m. Soil organic matter both under canopy and in interspace showed a positive correlation with the total vegetation cover, however, there was no significant correlation between the other soil nutrients and the total vegetation cover. We also analyzed the relationship between the shrubs and annuals and the soil nutrients along the zone. Similarly, there was no significant correlation between them, except soil organic matter with the annuals. The results implied that annual plants played an important role in soil nutrient enrichment in arid ecosystem. 展开更多
关键词 China DESERT islands of fertility soil nutrient heterogeneity transitional zone.
原文传递
Clonal integration benefits invasive alien plants under water variability in a native community 被引量:3
2
作者 Duo Chen Hao Xiong +4 位作者 Chang-Gen Lin Wei He Zhuo-Wen Zhang Hui Wang Yong-Jian Wang 《Journal of Plant Ecology》 SCIE CSCD 2019年第3期574-582,共9页
Aims Many invasive alien plant species are clonal and can greatly propa-gate and spread through clonal integration(sharing resources between connected ramets)in heterogeneous and variable environ-ments.Here,we tested ... Aims Many invasive alien plant species are clonal and can greatly propa-gate and spread through clonal integration(sharing resources between connected ramets)in heterogeneous and variable environ-ments.Here,we tested whether water variability influences clonal integration of invasive alien plant species and consequently facili-tates their growth and dominance in a native community.Methods We selected four typical invasive clonal plant species in China.Connected(with clonal integration)and disconnected(without clonal integration)clonal fragments were established either under constant watering or variable watering condition in an experimental native plant community consisting of three naturally co-occurring grassland species.Proximal part of the container received high nu-trient and distal part received low nutrient.Important Findings Clonal integration significantly increased biomass,aboveground mass and belowground mass of invasive alien plants in the proximal ramets,the distal ramets and the whole clone and de-creased the growth of native community.Interestingly,clonal in-tegration significantly increased the growth of invasive plants in variable watering.The positive effect of clonal integration was stronger in variable watering than in constant watering.Invasive plants with clonal integration had high biomass proportion(>0.6)in the whole community.Our results suggest that invasive clonal plants benefit more from clonal integration in variable water en-vironments when established in a native community,and to some extent,clonal integration potentially contribute greatly to the inva-siveness of alien clonal plants when they enter a new community with resource variability. 展开更多
关键词 biomass proportion nutrient heterogeneity physiological integration plant invasion resource variability
原文传递
Effects of plant species richness on stand structure and productivity 被引量:1
3
作者 Luca Wacker Oksana Baudois +1 位作者 Susann Eichenberger-Glinz Bernhard Schmid 《Journal of Plant Ecology》 SCIE 2009年第2期95-106,共12页
Aims Aboveground biomass production commonly increases with species richness in plant biodiversity experiments.Little is known about the direct mechanisms that cause this result.We tested if by occupying different hei... Aims Aboveground biomass production commonly increases with species richness in plant biodiversity experiments.Little is known about the direct mechanisms that cause this result.We tested if by occupying different heights and depths above and below ground,and by optimizing the vertical distribution of leaf nitrogen,species in mixtures can contribute to increased resource uptake and,thus,increased productivity of the community in comparison with monocultures.Methods We grew 24 grassland plant species,grouped into four nonoverlapping species pools,in monoculture and 3-and 6-species mixture in spatially heterogeneous and uniform soil nutrient conditions.Layered harvests of above-and belowground biomass,as well as leaf nitrogen and light measurements,were taken to assess vertical canopy and root space structure.Important Findings The distribution of leaf mass was shifted toward greater heights and light absorption was correspondingly enhanced in mixtures.How ever,only some mixtures had leaf nitrogen concentration profiles predicted to optimize whole-community carbon gain,whereas in other mixtures species seemed to behave more‘selfish’.Nevertheless,even in these communities,biomass production increased with species richness.The distribution of root biomass below ground did not change from monocultures to three-and six-species mixtures and there was also no indication that mixtures were better than monocultures at extracting heterogeneously as compared to homogeneously distributed soil resources.We conclude that positive biodiversity effect on aboveground biomass production cannot easily be explained by a single or few common mechanisms of differential space use.Rather,it seems that mechanisms vary with the particular set of species combined in a community. 展开更多
关键词 biodiversity effects heterogeneous nutrient distribution leaf nitrogen allocation root biomass distribution spatial niche separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部