Background: During nutritional stress, reduced intake may reduce the efficacy of anabolic implants. This study was conducted to evaluate basic cellular responses to a growth promotant implant at two intake levels. Me...Background: During nutritional stress, reduced intake may reduce the efficacy of anabolic implants. This study was conducted to evaluate basic cellular responses to a growth promotant implant at two intake levels. Methods: Sixteen crossbred steers (293 ± 19.3 kg) were used to evaluate the impact of anabolic implants in either an adequate or a restricted nutritional state. Steers were trained to individual Calan gates, and then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Treatments consisted off presence or absence of an anabolic growth implant (Revalor-XS, 200 mg TBA and 40 mg estradiol; IMPLANT or CONTROL) and a moderate energy, pelleted, starting cattle diet fed at either 2.0 × or 1.0 × maintenance energy (NEM) requirements (HIGH or LOW). Serum (d O, 14, and 28) was used for application to bovine muscle satellite cells. After treatment with the serum (20% of total media) from the trial cattle, the satellite cells were incubated for 72 h. Protein abundance of myosin heavy chain (MHC), phosphorylated extracellular signal-related kinase (phospho-ERK), and phosphorylated mammalian target of rapamycin (phospho-mTOR) were analyzed to determine the effects of implant, intake, and their interaction (applied via the serum). Results: Intake had no effect on MHC (P = 0.85) but IMPLANT increased (P 〈 0.01) MHC abundance vs. CONTROL. Implant status, intake status, and the interaction had no effect on the abundance of phospho-ERK (P〉0.23). Implanting increased phospho-mTOR (P 〈 0.01) but there was no effect (P 〉 0.51) of intake or intake x implant. Conclusions: The nearly complete lack of interaction between implant and nutritional status indicates that the signaling molecules measured herein respond to implants and nutritional status independently. Furthermore, results suggest that the muscle hypertrophic effects of anabolic implants may not be mediated by circulating IGF-1.展开更多
Background: The objective of this study was to investigate the effect of dietary restriction and subsequent compensatory growth on the relative expression of genes involved in volatile fatty acid transport, metabolis...Background: The objective of this study was to investigate the effect of dietary restriction and subsequent compensatory growth on the relative expression of genes involved in volatile fatty acid transport, metabolism and cell proliferation in ruminal epithelial tissue of beef cattle. Sixty Holstein Friesian bulls(mean liveweight 370 ± 35 kg;mean age 479 ± 15 d) were assigned to one of two groups:(i) restricted feed allowance(RES; n = 30) for 125 d(Period 1) followed by ad libitum access to feed for 55 d(Period 2) or(ii) ad libitum access to feed throughout(ADLIB; n = 30). Target growth rate for RES was 0.6 kg/d during Period 1. At the end of each dietary period, 15 animals from each treatment group were slaughtered and ruminal epithelial tissue and liquid digesta harvested from the ventral sac of the rumen. Real-time q PCR was used to quantify m RNA transcripts of 26 genes associated with ruminal epithelial function. Volatile fatty acid analysis of rumen fluid from individual animals was conducted using gas chromatography.Results: Diet × period interactions were evident for genes involved in ketogenesis(BDH2, P = 0.017), pyruvate metabolism(LDHa, P = 0.048; PDHA1, P = 0.015) and cellular transport and structure(DSG1, P = 0.019; CACT, P = 0.027). Ruminal concentrations of propionic acid(P = 0.018) and n-valeric acid(P = 0.029) were lower in RES animals, compared with ADLIB, throughout the experiment. There was also a strong tendency(P = 0.064)toward a diet × period interaction for n-butyric with higher concentrations in RES animals, compared with ADLIB, during Period 1.Conclusions: These data suggest that following nutrient restriction, the structural integrity of the rumen wall is compromised and there is upregulation of genes involved in the production of ketone bodies and breakdown of pyruvate for cellular energy. These results provide an insight into the potential molecular mechanisms regulating ruminal epithelial absorptive metabolism and growth following nutrient restriction and subsequent compensatory growth.展开更多
文摘Background: During nutritional stress, reduced intake may reduce the efficacy of anabolic implants. This study was conducted to evaluate basic cellular responses to a growth promotant implant at two intake levels. Methods: Sixteen crossbred steers (293 ± 19.3 kg) were used to evaluate the impact of anabolic implants in either an adequate or a restricted nutritional state. Steers were trained to individual Calan gates, and then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Treatments consisted off presence or absence of an anabolic growth implant (Revalor-XS, 200 mg TBA and 40 mg estradiol; IMPLANT or CONTROL) and a moderate energy, pelleted, starting cattle diet fed at either 2.0 × or 1.0 × maintenance energy (NEM) requirements (HIGH or LOW). Serum (d O, 14, and 28) was used for application to bovine muscle satellite cells. After treatment with the serum (20% of total media) from the trial cattle, the satellite cells were incubated for 72 h. Protein abundance of myosin heavy chain (MHC), phosphorylated extracellular signal-related kinase (phospho-ERK), and phosphorylated mammalian target of rapamycin (phospho-mTOR) were analyzed to determine the effects of implant, intake, and their interaction (applied via the serum). Results: Intake had no effect on MHC (P = 0.85) but IMPLANT increased (P 〈 0.01) MHC abundance vs. CONTROL. Implant status, intake status, and the interaction had no effect on the abundance of phospho-ERK (P〉0.23). Implanting increased phospho-mTOR (P 〈 0.01) but there was no effect (P 〉 0.51) of intake or intake x implant. Conclusions: The nearly complete lack of interaction between implant and nutritional status indicates that the signaling molecules measured herein respond to implants and nutritional status independently. Furthermore, results suggest that the muscle hypertrophic effects of anabolic implants may not be mediated by circulating IGF-1.
基金funded through Science Foundation Ireland(SFI)contract no 09/RFP/GEN2447
文摘Background: The objective of this study was to investigate the effect of dietary restriction and subsequent compensatory growth on the relative expression of genes involved in volatile fatty acid transport, metabolism and cell proliferation in ruminal epithelial tissue of beef cattle. Sixty Holstein Friesian bulls(mean liveweight 370 ± 35 kg;mean age 479 ± 15 d) were assigned to one of two groups:(i) restricted feed allowance(RES; n = 30) for 125 d(Period 1) followed by ad libitum access to feed for 55 d(Period 2) or(ii) ad libitum access to feed throughout(ADLIB; n = 30). Target growth rate for RES was 0.6 kg/d during Period 1. At the end of each dietary period, 15 animals from each treatment group were slaughtered and ruminal epithelial tissue and liquid digesta harvested from the ventral sac of the rumen. Real-time q PCR was used to quantify m RNA transcripts of 26 genes associated with ruminal epithelial function. Volatile fatty acid analysis of rumen fluid from individual animals was conducted using gas chromatography.Results: Diet × period interactions were evident for genes involved in ketogenesis(BDH2, P = 0.017), pyruvate metabolism(LDHa, P = 0.048; PDHA1, P = 0.015) and cellular transport and structure(DSG1, P = 0.019; CACT, P = 0.027). Ruminal concentrations of propionic acid(P = 0.018) and n-valeric acid(P = 0.029) were lower in RES animals, compared with ADLIB, throughout the experiment. There was also a strong tendency(P = 0.064)toward a diet × period interaction for n-butyric with higher concentrations in RES animals, compared with ADLIB, during Period 1.Conclusions: These data suggest that following nutrient restriction, the structural integrity of the rumen wall is compromised and there is upregulation of genes involved in the production of ketone bodies and breakdown of pyruvate for cellular energy. These results provide an insight into the potential molecular mechanisms regulating ruminal epithelial absorptive metabolism and growth following nutrient restriction and subsequent compensatory growth.