One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this...One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.展开更多
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio...Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.展开更多
Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the ef...Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies.展开更多
Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological s...Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological soil crusts)cover in desert steppe in Northwest China to characterize the water sources of shrub(Caragana intermedia Kuang et H.C.Fu)and grass(Artemisia scoparia Waldst.et Kit.)by stable 18O isotopic.Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017,the minimum soil depth with CV(coefficient of variation)<15% and SWC(soil water content)<6% was 1.4 m in shrubland with open areas lacking obvious BSC cover,and 0.8 m in shrubland covered by mature BSCs.For C.intermedia,a considerable proportion of water sources pointed to the surface soil.Water from BSCs contributed to averages 22.9%and 17.6%of the total for C.intermedia and A.scoparia,respectively.C.intermedia might use more water from BSCs in rainy season than dry season,in contrast to A.scoparia.The relationship between shrub(or grass)and soil water by δ^(18)O shown significant differences in months,which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale.More fine roots at 0-5 cm soil layer could be found in the surface soil layer covered by BSCs(8000 cm/m^(3))than without BSCs(3200 cm/m^(3)),which ensured the possibility of using the surface soil water by C.intermedia.The result implies that even under serious soil water deficiency,C.intermedia can use the surface soil water,leading to the coexistence between C.intermedia and A.scoparia.Different with the result from BSCs in desert areas,the natural withdrawal of artificial C.intermedia from desert steppe will be a long-term process,and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time.展开更多
In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltrati...In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltration simulation tests were conducted on homogeneous soil and layered soil(layer thickness 5,10,and 20 cm),respectively.The results show that during the whole experiment,there was a small difference between S5A95(aeolian sandy soil 95 cm thick was covered with sierozem 5 cm thick)and S10A90(aeolian sandy soil 90 cm thick was covered with sierozem 10 cm thick)in the wetting front process,infiltration rate and cumulative infiltration,but there was a significant difference between S5A95 and S20A80(aeolian sandy soil 80 cm thick was covered with sierozem 20 cm thick).In the initial infiltration stage,there was no significant difference between A5S95(sierozem 95 cm thick was covered with aeolian sandy soil 5 cm thick)and A10S90(sierozem 90 cm thick was covered with aeolian sandy soil 10 cm thick).However,with the increase of infiltration time,the wetting front process,A5S95,A10S90 and A20S80 had significant differences in terms of wetting front process,infiltration rate and cumulative infiltration.The infiltration capacity of A was significantly higher than that of S.Combined with linear R 2 value and model parameters,the three infiltration models were comprehensively compared,and the fitting process and results of the general empirical model for the infiltration process of homogeneous soil and layered soil showed good results.Three models were used to simulate the water infiltration process of layered soil with different textures,and the order of the effect is as follows:general empirical model>Kostiakov model>Philip model.Soil type and layer thickness had a great influence on water infiltration process.When sierozem was covered with aeolian sandy soil 20 cm thick,the infiltration capacity was the best.As aeolian sandy soil was covered with sierozem 10 cm thick,the infiltration effect was the worst.Therefore,once coarse graying occurs on the surface of sierozem(the thickness of sand is more than 20 cm)or when the content of fine particles overlying aeolian sandy soil(the thickness of silt and clay soil is more than 10 cm)during ecological restoration is high,the soil hydrological characteristics will change significantly,which may lead to changes in vegetation types and even ecosystem structure.展开更多
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing...Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.展开更多
In order to study the diurnal variation of soil CO2 effiux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO2 flux s...In order to study the diurnal variation of soil CO2 effiux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO2 flux system under five typical plant communi- ties (Suaeda glauca (Sg), Chloris virgata (Cv), Puecinellia distans (Pd), Leymus chinensis (Lc) and Phragmites australis (Pa)) and an alkali-spot land (As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO2 effiux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration (Rs) often appeared between 1 1:00 and 13:00, while the minimum occurred at 21:00-23:00 or before dawn. Air temperature near the soil surface (Ta) and soil temperature at 10 cm depth (Tlo) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00-9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 effiux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO2 effiux was close to the soil COz effiux from 15:00 to 17:00 and the mean of 2 individual soil CO2 effiux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO2 fluxes (CO2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO2 fluxes were 0.10-1.55 gmol/(m2.s) and 0.10-0.69 gmol/(m2.s)at the two sites. The results im- plied that alkaline soils could absorb CO2 under natural condition, which might have significant implications to the global carbon budget accounting.展开更多
In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Sti...In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Stipa krylovii steppe for research and studied the plant community characteristics and the topsoil organic matter content. The results showed that in the sedentary grazing area, the perennial plant species decreased, the annual plant species increased, and the topsoil organic matter content decreased. There were a negative correlation between plant biomass and topsoil organic matter content, and a positive correlation between total coverage and topsoil organic matter content. The change of plant community characteristics in the sedentary grazing area was related to the implementation of the system of transferring the pasture use rights to the herdsmen and controlled grazing.展开更多
Regularities of rank distributions and binary relations between nine parameters are given.The most active are the geographical coordinates of 48 test sites.This proves that the geomorphology of the steppes in Mongolia...Regularities of rank distributions and binary relations between nine parameters are given.The most active are the geographical coordinates of 48 test sites.This proves that the geomorphology of the steppes in Mongolia and Inner Mongolia is becoming decisive.Factor analysis showed that the first four places for influencing variables and dependent indicators are the same:in the first place is the northern latitude,the second is the east longitude,the third is the average annual precipitation,and the fourth is the intensity of sheep grazing.The rest of the factors are located in different ways.The density of organic carbon was only in ninth place as an influencing variable,and in seventh place as a dependent indicator.This is based on the fact that organic carbon is an accumulative(cumulative)parameter over many years.The productivity of the biomass of steppe grass as an influencing variable is in sixth place,and as a dependent indicator(criterion)only in ninth place.This parameter is seasonal,therefore,in comparison with organic carbon,it is highly dynamic.The average annual temperature as an influencing variable is in fifth place,but as a dependent indicator only in eighth place.This was influenced by the strong averaging of the parameter(average value for the year).Plants are strongly influenced by the temperature dynamics during the growing season,and even more by the sum of temperatures during the growing season.With the productivity of steppe grass less than 75 g/m^(2),the intensity of sheep grazing is zero.According to the second term of the trend,an optimum of 270 g/m^(2) appears with the maximum intensity of sheep grazing on average 65 pcs/km^(2).The first fluctuation shows that with an increase in grass biomass,there is a loss of stability of the grass cover with an exponential growth of the amplitude.The second oscillation is dangerous in that with an increase in the biomass of the grass,the half-period of the oscillation sharply decreases and this will also lead to the collapse of the steppe grass.From the remnants of the effect of sheep grazing on grass biomass,it can be seen that there are three clusters:(1)from 0 to 30;(2)from 30 to 95;(3)more than 95 pcs/km^(2).In this case,the variability of the productivity of the grass decreases.展开更多
The bioclimatic regularities between the average annual precipitation,average annual temperatures and the density of organic carbon in the soil layer of 0-30 cm of the steppes in the regions of the world are given.The...The bioclimatic regularities between the average annual precipitation,average annual temperatures and the density of organic carbon in the soil layer of 0-30 cm of the steppes in the regions of the world are given.They are distinguished by a high certainty of quantization by asymmetric wave equations.It turned out that,due to the vibrational adaptation of organic carbon,precipitation and temperature are dependent on each other.For example,the model of the influence of precipitation on temperature includes the first term in the form of Laplace’s law(in mathematics),Mandelbrot’law(in physics),Zipf-Perl(in biology),and Pareto(in econometrics).The second term is the biotechnical law of the author of the article,which gives the maximum change in the indicator.Both components form a trend that makes it possible to divide the precipitation interval into three stages:(1)with an increase in precipitation from 0 to 60 mm,the temperature decreases according to Mandelbrot’s law from 23.25 to 0.50С;(2)from 60 to 2100 mm,the temperature rises to 24℃;(3)with a further increase in precipitation over 2100 mm,a slow decrease in temperature occurs.The third term is an asymmetric wavelet with a constant half-period of 367.8 mm.A positive sign shows that in the steppes there is a positive oscillatory adaptation of temperature to changes in precipitation.In the interval of precipitation 0-350 mm,an oscillatory decrease in temperature occurs.It turns out that the first oscillation at 0 mm precipitation begins with a very high temperature gradient of thermal energy.The first interval includes Mongolia and Inner Mongolia.In the second interval of 350-750 mm,an oscillatory increase in temperature occurs.Then,in the third interval 750-1050 mm,the temperature drops again.The second oscillation with a correlation coefficient of 0.9685 has clear precipitation boundaries in the range of 200-2000 mm.Due to the negative sign,the fluctuation is a crisis,inhibiting the rise in temperature.And the third fluctuation has a positive effect on the temperature.The mechanism of oscillatory adaptation in the steppe soil is so perfect that it changes for itself the conditions of the place where the grass grows.An amplitude-frequency analysis of each oscillation will make it possible to determine the specific particular effects of precipitation and temperature on each other and on the density of organic carbon.It was found that two-factor modeling of the change in the soil organic carbon density makes it possible to achieve an identification error even less than the absolute measurement error.展开更多
We studied a soil seed bank in the Stipa breviflora desert steppe under three grassland management systems, namely continuous grazing, rotational grazing, and no grazing, from 1999 until 2007. The germinable seed bank...We studied a soil seed bank in the Stipa breviflora desert steppe under three grassland management systems, namely continuous grazing, rotational grazing, and no grazing, from 1999 until 2007. The germinable seed bank species in rotational, continuous and no gazing were 11, 9 and 8 species, respectively. Rotational grazing increased the number of seed bank plant species and perenni- al grasses. The density of germinal soil seed bank was significantly higher in the enclosed area (19,533.33 seeds/m2) than those in rotational (3,233.33 seeds/mz) and continuous grazing areas (2,553.60 seeds/m2). The vertical distribution of the soil seed bank had a similar trend: 75.06%-83.19% of the seeds are distributed in the top 0-5 cm soil layer, 14.16%-21.68% in the 5-10 cm lay- er, and 2.65%-4.95% in the 10-15 cm layer, which varied between the grazing treatments. Density of the soil seed bank was sig- nificantly higher in the enclosed area, and there was no significant difference between rotational and continuous grazing. The Margalef and Shannon-Wiener indices for the soil seed bank were higher for rotational grazing treatment than for continuous grazing. The Sorensen's similarity index for the soil seed bank between the enclosed and rotational grazing areas reached 0.857.展开更多
The morphology, physicochemical, humic substances and micromorphological characteristics of four soil profiles of the steppe dominant by Festuca lenensis (F. lenensis) at the high mountain and mountain of Khuvsgul, Mo...The morphology, physicochemical, humic substances and micromorphological characteristics of four soil profiles of the steppe dominant by Festuca lenensis (F. lenensis) at the high mountain and mountain of Khuvsgul, Mongolia were studied. Soils were classified as Regosols and Leptosols at high mountain steppe, Leptosols and Cambisols at mountain steppe. On a high mountain, the plant root distribution, OC, N and moisture contents were high due to its high precipitation and low temperature. The soils show immature characteristics with low available nutrients, weakly developed crumb structure, many semi- and undecomposed plant residues, and few little organic pigments with few excrements. The humic acids with immature to degraded characteristics indicate that the climatic condition of high mountains inhibits the soil decomposition process. Due to extremely different landform positions, there a sharp difference was observed between studied soils on high mountain steppe. On the summit with a flat position, the soil of TSO1 showed finer soil texture with higher CEC, exchangeable Mg<sup>2+</sup> and humification degree of SOM compared with the soil of TSO2, which located on the steep slope. This confirms that the abrupt changes in landform on high mountain strongly affect the properties of topsoil. On the mountain steppe, the soil contains higher exchangeable Na<sup>+</sup>, exchangeable K<sup>+</sup> and water soluble at topsoil;however, the plant root distribution, OC, N and moisture contents were lower than that of high mountain soil. Because of warmer air and soil temperature in comparison with that of high elevation, active turnover in humic horizon and chemical weathering process lead to higher available nutrients in mountain steppe. The degraded to well humified characteristics of humic acid, moderately developed crumb structure, a higher component of little organic pigment and many intact excrements indicate that the soil decomposition process and biological activity were higher than that of the high mountain steppe. Our finding suggests that the climatic condition dependent on altitude and landform position at the high mountain and mountain of Khuvsgul had a large impact and played a key role in the soil properties and characteristics of steppe dominant by F. lenensis.展开更多
Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional gene...Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional genes involved in soil C cycling remain largely unknown.We investigated the effects of warming and increased precipitation on soil C cycling in a temperate desert steppe of Inner Mongolia using metagenomic sequencing.We found that warming reduced plant richness,Shannon-Wiener and Simpson index.In contrast,increased precipitation signifcantly infuenced Shannon-Wiener and Simpson index.Warming reduced soil microbial species by 5.4%while increased precipitation and warming combined with increased precipitation led to increases in soil microbial species by 23.3%and 2.7%,respectively.The relative abundance of Proteobacteria,which involve C cycling genes,was signifcantly increased by warming and increased precipitation.Warming signifcantly reduced the abundance of GAPDH(Calvin cycle)and celF(cellulose degradation)while it enhanced the abundance of glxR(lignin degradation).Increased precipitation signifcantly enhanced the abundance of pgk(Calvin cycle),coxL(carbon monoxide oxidation),malZ(starch degradation),and mttB(methane production).Moreover,a wide range of correlations among soil properties and C cycling functional genes was detected,suggesting the synergistic and/or antagonistic relationships under scenario of global change.These results may suggest that warming is benefcial to soil C storage while increased precipitation negatively affects soil C sequestration.These fndings provide a new perspective for understanding the response of microbial communities to warming and increased precipitation in the temperate desert steppe.展开更多
The influence of the short storage periods at different temperatures on the concentrations of extractable soil cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup...The influence of the short storage periods at different temperatures on the concentrations of extractable soil cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>) and anions (Cl<sup>-</sup>, SO<sub>4</sub>-</sup> and PO<sub>4</sub>-</sup> ) has been investigated in nine soil samples from Nile river terraces at River Nile State, North of Sudan (17.82289 to 17.82389N and 33.99974 to 34.02127E). Each soil extract is divided into three treatments: i) control (immediately analyzed);ii) storage for 10 days and;iii) storage for 30 days. Each treatment is replicated three times: i) storage at 10°C;ii) storage at ambient laboratory temperature (25°C) and;iii) storage at 45°C in incubator. Statistical analysis of results reveals that significant difference are found at level (P -</sup> and PO<sub>4</sub>-</sup> (0.043, 0.002, 0.001, 0.021, 0.004 and 0.001) respectively at 25°C and 45°C and storage periods of 10 and 30 days. In contrast, significant difference is also found at level (P -</sup> concentrations are significantly decreased when the storage period exceeds 10 days and temperature more than 25°C. Depending upon our study results;we conclude that, all extractable inorganic nutrients are clearly affected by storage periods at various temperatures, exception of Na<sup>+</sup>. Most cations and anions are increased significantly with increased of storage period and temperatures. We therefore highly recommend that the extractable inorganic soil nutrients should be rapidly analyzed in order to obtain accurate results;otherwise, the time between extraction and analysis should be carefully recorded which may help considerably interpreting data from various studies.展开更多
Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin Rive...Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.展开更多
A comparative study of soil respiration was conducted between in a semi-arid steppe community and in a wet meadow community in the Xilin River Basin of Nei Mongol. The seasonal pattern, the climatic controls, and the ...A comparative study of soil respiration was conducted between in a semi-arid steppe community and in a wet meadow community in the Xilin River Basin of Nei Mongol. The seasonal pattern, the climatic controls, and the correlations of soil respiration with plant biomass components, were examined for each community. The main results are reported as follows: (1) The seasonal changes in soil respiration in the two communities had similar dynamic patterns (both being of two peaks), ranging from 312.8 to 1738.9 mg C(.)m(-2).s(-1) and from 354.6 to 2235.6 Mg C.m(-2).s(-1) in the growing season for the steppe plot and the meadow plot respectively. The soil respiration rate of the meadow plot was distinctly higher than that of the steppe plot, with the daily averages being 1349.6 mg C-m(-2).s(-1) and 785.9 mg C-m(-2).s(-1) respectively. (2) The correlation between soil respiration rate and soil moisture was much more significant than with temperature for the steppe community, and being on the contrary for the meadow community, reflecting the different effects of the two climatic factors in different habitats. Based on these regressive relations, the total CO2 efflux rate in the growing season in 2001 was estimated as 142.4 g C/m(2) in the steppe plot, and 236.1 g C/m(2) in the meadow plot. (3) There was no evident relation between the total canopy biomass and CO2 evolution rate, but a significant power function relation between the live canopy biomass and CO2 evolution rate in the meadow plot was detected. In the steppe plot, there existed only a weak relation between soil respiration and either live or total canopy biomass.展开更多
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a ...Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effiuxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 effiux of the Aneurolepidium chinense steppe varied between 356.4 gC m^-2 yr^-1 and 408.8 gC m^-2 yr^-1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m^-2 yr^-1 to 148.6 g Cm^-2 yr^-1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 - 0.85, p 〈 0.05 or p 〈 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10-20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10-20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.展开更多
Water is a limiting factor in the restoration and construction of desert steppe.Exploring plant water sources is necessary to understand soil-plant interactions and species coexistence;however,water sources of major p...Water is a limiting factor in the restoration and construction of desert steppe.Exploring plant water sources is necessary to understand soil-plant interactions and species coexistence;however,water sources of major plant communities within the desert steppe of Ningxia Hui Autonomous Region,China remain poorly understood.In this study,we analyzed the water uptake of plants in four typical communities:Agropyron mongolicum Keng.;Sophora alopecuroids Linn.;Stipa breviflora Griseb.,and Achnatherum splendens(Trin.)Nevski communities.Stable isotopesδD andδ^(18)O in the xylem of plant and soil water at different soil depths were analyzed.An IsoSource model was used to determine the soil depths from which plants obtained water.Results showed that A.mongolicum community obtained water predominantly from 0–20 and 40–80 cm depth,S.alopecuroids community from 0–20 cm depth,S.breviflora community from 0–40 cm depth,and A.splendens community from 0–20 and 80–140 cm depths.S.alopecuroides had a wider range of soil depths for water extraction,i.e.,utilizing different water sources depending on habitat,and the plasticity of its water uptake pattern determined its role in different communities.Water source of plants relayed heavily on the distribution of their roots.Competition for soil water exists between different plant life forms in the sierozem habitat(A.mongolicum,S.alopecuroids,and S.breviflora communities),and in the sandy soil habitat(A.splendens community).The use of soil water by A.splendens community is more spatially differentiated,and shrubs and herbs can coexist stably.Under the pattern of extended drought period in the future,sierozem habitat may be more favorable for the formation of a dominant monoculture community type of perennial fibrous plants.In aeolian sandy soil habitat,A.splendens had a strong competitive advantage,and the growth of shallow-rooted plants was easily suppressed.展开更多
The results of studies of the peculiarities of formation of phytocenoses in environments contact sites of the western and eastern coasts of the Lake Baikal has been showed in this paper. On the base of geobotanic prof...The results of studies of the peculiarities of formation of phytocenoses in environments contact sites of the western and eastern coasts of the Lake Baikal has been showed in this paper. On the base of geobotanic profiling combined with soil one, the structure and dynamics of phytocenoses forming under the conditions of mutual development of light-coniferous taiga forest and of extra zonal steppes. Edaphic conditions and placement of phytocenoses are main trigger factors determining the ways of plant cover development in this part of Lake Baikal basin. We discuss the characteristics properties inherent in the linkage of the dynamics and spatial variability of the vegetation with the change of climate in the Baikal region. The regional conditions of the physiogeographic environment had given rise to structurally highly contrasting plant communities in this region. The increase in yearly mean summertime amounts of rainfall, combined with the rise of yearly mean winter temperatures over the last years were conducive to changes in the spatial structure of vegetation. The boundary between the types of vegetation undergoes smoothing. The upper boundary of forest is altered because of changes of the environment that are responsible for the zonality and properties of vertical zonality of the vegetation on the mountains surrounding Lake Baikal. Changes in the vegetation serve as indicators of climate change as well as providing diagnostic tools for the genesis of the Baikal region’s natural environment.展开更多
To establish an assessment of floristic and edaphic characteristics of steppe formations we conducted a phytoecological study on a local scale by comparing the current plant diversity and soil in three (3) stations re...To establish an assessment of floristic and edaphic characteristics of steppe formations we conducted a phytoecological study on a local scale by comparing the current plant diversity and soil in three (3) stations representative of the vegetation to alfa (Stipa tenacissima L.) located south of Saida (western Algeria). The relations between the station, the vegetation and the characteristics of soils in the steppe are very imperfectly known. This study intends to analyze the relationship between floristic composition and edaphic parameters of the steppe at alfa. Anthropogenic pressures on plant structure are different imbalance resulting in one ecological. The floristic and edaphic data have been the subject of a factorial correspondence analysis (A.F.C). The floristic inventory denotes a regressive dynamics of the formations at alfa passing from one site to another. Thus 39 plant species have been inventoried in the site in good condition, against 26 species for the moderately degraded site and 16 species only for the damaged site. The coupled results between species and edaphic parameters show the relations between the plant diversity and the physico-chemical characteristics of the soils. The statistical analyses do appear a strong correlation between floristic composition, the state of vegetation and the edaphic parameters.展开更多
基金funded by the National Natural Science Foundation of China(32061123006,32360426).
文摘One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas.
基金the National Natural Science Foundation of China(31860136,31560156)the Basic Scientific Research Service Fee Project of Colleges and Universities of Inner Mongolia Autonomous Regionthe Graduate Scientific Research Innovation Project of Inner Mongolia Autonomous Region(B20210158Z).
文摘Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.
基金supported by the National Natural Science Foundation of China(31960359)the Ningxia Hui Autonomous Region Key Research and Development Project(2021BEG02005,2023BEG02049)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2020AAC03102,2023AAC03061)。
文摘Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies.
基金This research was funded by the National Natural Science Foundation of China(32060313,31760707).
文摘Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological soil crusts)cover in desert steppe in Northwest China to characterize the water sources of shrub(Caragana intermedia Kuang et H.C.Fu)and grass(Artemisia scoparia Waldst.et Kit.)by stable 18O isotopic.Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017,the minimum soil depth with CV(coefficient of variation)<15% and SWC(soil water content)<6% was 1.4 m in shrubland with open areas lacking obvious BSC cover,and 0.8 m in shrubland covered by mature BSCs.For C.intermedia,a considerable proportion of water sources pointed to the surface soil.Water from BSCs contributed to averages 22.9%and 17.6%of the total for C.intermedia and A.scoparia,respectively.C.intermedia might use more water from BSCs in rainy season than dry season,in contrast to A.scoparia.The relationship between shrub(or grass)and soil water by δ^(18)O shown significant differences in months,which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale.More fine roots at 0-5 cm soil layer could be found in the surface soil layer covered by BSCs(8000 cm/m^(3))than without BSCs(3200 cm/m^(3)),which ensured the possibility of using the surface soil water by C.intermedia.The result implies that even under serious soil water deficiency,C.intermedia can use the surface soil water,leading to the coexistence between C.intermedia and A.scoparia.Different with the result from BSCs in desert areas,the natural withdrawal of artificial C.intermedia from desert steppe will be a long-term process,and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time.
基金Supported by the Natural Science Foundation of Ningxia Hui Autonomous Region(2022AAC03661)Financial Project of Geological Bureau of Ningxia Hui Autonomous Region(NXCZ20220201).
文摘In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltration simulation tests were conducted on homogeneous soil and layered soil(layer thickness 5,10,and 20 cm),respectively.The results show that during the whole experiment,there was a small difference between S5A95(aeolian sandy soil 95 cm thick was covered with sierozem 5 cm thick)and S10A90(aeolian sandy soil 90 cm thick was covered with sierozem 10 cm thick)in the wetting front process,infiltration rate and cumulative infiltration,but there was a significant difference between S5A95 and S20A80(aeolian sandy soil 80 cm thick was covered with sierozem 20 cm thick).In the initial infiltration stage,there was no significant difference between A5S95(sierozem 95 cm thick was covered with aeolian sandy soil 5 cm thick)and A10S90(sierozem 90 cm thick was covered with aeolian sandy soil 10 cm thick).However,with the increase of infiltration time,the wetting front process,A5S95,A10S90 and A20S80 had significant differences in terms of wetting front process,infiltration rate and cumulative infiltration.The infiltration capacity of A was significantly higher than that of S.Combined with linear R 2 value and model parameters,the three infiltration models were comprehensively compared,and the fitting process and results of the general empirical model for the infiltration process of homogeneous soil and layered soil showed good results.Three models were used to simulate the water infiltration process of layered soil with different textures,and the order of the effect is as follows:general empirical model>Kostiakov model>Philip model.Soil type and layer thickness had a great influence on water infiltration process.When sierozem was covered with aeolian sandy soil 20 cm thick,the infiltration capacity was the best.As aeolian sandy soil was covered with sierozem 10 cm thick,the infiltration effect was the worst.Therefore,once coarse graying occurs on the surface of sierozem(the thickness of sand is more than 20 cm)or when the content of fine particles overlying aeolian sandy soil(the thickness of silt and clay soil is more than 10 cm)during ecological restoration is high,the soil hydrological characteristics will change significantly,which may lead to changes in vegetation types and even ecosystem structure.
基金supported by the State Key Research Development Program of China (Grant 2016YFC0502002)Youth Innovation Research Team Project (LENOM2016Q0003)
文摘Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.
基金Under the auspices of National Natural Science Foundation of China(No.41501090,41501105)Fundamental Research Funds for Central Universities(No.2412015KJ023)
文摘In order to study the diurnal variation of soil CO2 effiux from temperate meadow steppes in Northeast China, and determine the best time for observation, a field experiment was conducted with a LI-6400 soil CO2 flux system under five typical plant communi- ties (Suaeda glauca (Sg), Chloris virgata (Cv), Puecinellia distans (Pd), Leymus chinensis (Lc) and Phragmites australis (Pa)) and an alkali-spot land (As) at the meadow steppe of western Songnen Plain. The results showed that the diurnal variation of soil CO2 effiux exhibited a single peak curve in the growing season. Diurnal maximum soil respiration (Rs) often appeared between 1 1:00 and 13:00, while the minimum occurred at 21:00-23:00 or before dawn. Air temperature near the soil surface (Ta) and soil temperature at 10 cm depth (Tlo) exerted dominant control on the diurnal variations of soil respiration. The time-windows 7:00-9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 effiux at the Cv, Pd, Lc and Pa sites. The daily mean soil CO2 effiux was close to the soil COz effiux from 15:00 to 17:00 and the mean of 2 individual soil CO2 effiux from 15:00 to 19:00 at the As and Sg sites, respectively. During nocturnal hours, negative soil CO2 fluxes (CO2 downwards into the soil) were frequently observed at the As and Sg sites, the magnitude of the negative CO2 fluxes were 0.10-1.55 gmol/(m2.s) and 0.10-0.69 gmol/(m2.s)at the two sites. The results im- plied that alkaline soils could absorb CO2 under natural condition, which might have significant implications to the global carbon budget accounting.
基金Sponsored by National Natural Science Foundation of China(41561009,41561050)Scientific Research Innovation Funds for Graduates in Inner Mongolia Normal University(CXJJ17101)
文摘In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Stipa krylovii steppe for research and studied the plant community characteristics and the topsoil organic matter content. The results showed that in the sedentary grazing area, the perennial plant species decreased, the annual plant species increased, and the topsoil organic matter content decreased. There were a negative correlation between plant biomass and topsoil organic matter content, and a positive correlation between total coverage and topsoil organic matter content. The change of plant community characteristics in the sedentary grazing area was related to the implementation of the system of transferring the pasture use rights to the herdsmen and controlled grazing.
文摘Regularities of rank distributions and binary relations between nine parameters are given.The most active are the geographical coordinates of 48 test sites.This proves that the geomorphology of the steppes in Mongolia and Inner Mongolia is becoming decisive.Factor analysis showed that the first four places for influencing variables and dependent indicators are the same:in the first place is the northern latitude,the second is the east longitude,the third is the average annual precipitation,and the fourth is the intensity of sheep grazing.The rest of the factors are located in different ways.The density of organic carbon was only in ninth place as an influencing variable,and in seventh place as a dependent indicator.This is based on the fact that organic carbon is an accumulative(cumulative)parameter over many years.The productivity of the biomass of steppe grass as an influencing variable is in sixth place,and as a dependent indicator(criterion)only in ninth place.This parameter is seasonal,therefore,in comparison with organic carbon,it is highly dynamic.The average annual temperature as an influencing variable is in fifth place,but as a dependent indicator only in eighth place.This was influenced by the strong averaging of the parameter(average value for the year).Plants are strongly influenced by the temperature dynamics during the growing season,and even more by the sum of temperatures during the growing season.With the productivity of steppe grass less than 75 g/m^(2),the intensity of sheep grazing is zero.According to the second term of the trend,an optimum of 270 g/m^(2) appears with the maximum intensity of sheep grazing on average 65 pcs/km^(2).The first fluctuation shows that with an increase in grass biomass,there is a loss of stability of the grass cover with an exponential growth of the amplitude.The second oscillation is dangerous in that with an increase in the biomass of the grass,the half-period of the oscillation sharply decreases and this will also lead to the collapse of the steppe grass.From the remnants of the effect of sheep grazing on grass biomass,it can be seen that there are three clusters:(1)from 0 to 30;(2)from 30 to 95;(3)more than 95 pcs/km^(2).In this case,the variability of the productivity of the grass decreases.
文摘The bioclimatic regularities between the average annual precipitation,average annual temperatures and the density of organic carbon in the soil layer of 0-30 cm of the steppes in the regions of the world are given.They are distinguished by a high certainty of quantization by asymmetric wave equations.It turned out that,due to the vibrational adaptation of organic carbon,precipitation and temperature are dependent on each other.For example,the model of the influence of precipitation on temperature includes the first term in the form of Laplace’s law(in mathematics),Mandelbrot’law(in physics),Zipf-Perl(in biology),and Pareto(in econometrics).The second term is the biotechnical law of the author of the article,which gives the maximum change in the indicator.Both components form a trend that makes it possible to divide the precipitation interval into three stages:(1)with an increase in precipitation from 0 to 60 mm,the temperature decreases according to Mandelbrot’s law from 23.25 to 0.50С;(2)from 60 to 2100 mm,the temperature rises to 24℃;(3)with a further increase in precipitation over 2100 mm,a slow decrease in temperature occurs.The third term is an asymmetric wavelet with a constant half-period of 367.8 mm.A positive sign shows that in the steppes there is a positive oscillatory adaptation of temperature to changes in precipitation.In the interval of precipitation 0-350 mm,an oscillatory decrease in temperature occurs.It turns out that the first oscillation at 0 mm precipitation begins with a very high temperature gradient of thermal energy.The first interval includes Mongolia and Inner Mongolia.In the second interval of 350-750 mm,an oscillatory increase in temperature occurs.Then,in the third interval 750-1050 mm,the temperature drops again.The second oscillation with a correlation coefficient of 0.9685 has clear precipitation boundaries in the range of 200-2000 mm.Due to the negative sign,the fluctuation is a crisis,inhibiting the rise in temperature.And the third fluctuation has a positive effect on the temperature.The mechanism of oscillatory adaptation in the steppe soil is so perfect that it changes for itself the conditions of the place where the grass grows.An amplitude-frequency analysis of each oscillation will make it possible to determine the specific particular effects of precipitation and temperature on each other and on the density of organic carbon.It was found that two-factor modeling of the change in the soil organic carbon density makes it possible to achieve an identification error even less than the absolute measurement error.
基金Demonstration of Grass Digital Monitoring,Control and Decision-making Techniques (2008GB23260400)Recovery of Degraded Vegetation in Inner Mongolia and Directed Economic Plants Industrial Growing Base,the Research of Forage Yield Remote Sensing Estimation and Carrying Capacity in Hulunbeir Grassland,the National high Technology Research and Development Program of China(2006AA10Z241)+1 种基金National Science and Technology Support Program (2006BAC01A12,2006BAD16B05-2)Modern Agricultural Technology System of Special Funding
文摘We studied a soil seed bank in the Stipa breviflora desert steppe under three grassland management systems, namely continuous grazing, rotational grazing, and no grazing, from 1999 until 2007. The germinable seed bank species in rotational, continuous and no gazing were 11, 9 and 8 species, respectively. Rotational grazing increased the number of seed bank plant species and perenni- al grasses. The density of germinal soil seed bank was significantly higher in the enclosed area (19,533.33 seeds/m2) than those in rotational (3,233.33 seeds/mz) and continuous grazing areas (2,553.60 seeds/m2). The vertical distribution of the soil seed bank had a similar trend: 75.06%-83.19% of the seeds are distributed in the top 0-5 cm soil layer, 14.16%-21.68% in the 5-10 cm lay- er, and 2.65%-4.95% in the 10-15 cm layer, which varied between the grazing treatments. Density of the soil seed bank was sig- nificantly higher in the enclosed area, and there was no significant difference between rotational and continuous grazing. The Margalef and Shannon-Wiener indices for the soil seed bank were higher for rotational grazing treatment than for continuous grazing. The Sorensen's similarity index for the soil seed bank between the enclosed and rotational grazing areas reached 0.857.
文摘The morphology, physicochemical, humic substances and micromorphological characteristics of four soil profiles of the steppe dominant by Festuca lenensis (F. lenensis) at the high mountain and mountain of Khuvsgul, Mongolia were studied. Soils were classified as Regosols and Leptosols at high mountain steppe, Leptosols and Cambisols at mountain steppe. On a high mountain, the plant root distribution, OC, N and moisture contents were high due to its high precipitation and low temperature. The soils show immature characteristics with low available nutrients, weakly developed crumb structure, many semi- and undecomposed plant residues, and few little organic pigments with few excrements. The humic acids with immature to degraded characteristics indicate that the climatic condition of high mountains inhibits the soil decomposition process. Due to extremely different landform positions, there a sharp difference was observed between studied soils on high mountain steppe. On the summit with a flat position, the soil of TSO1 showed finer soil texture with higher CEC, exchangeable Mg<sup>2+</sup> and humification degree of SOM compared with the soil of TSO2, which located on the steep slope. This confirms that the abrupt changes in landform on high mountain strongly affect the properties of topsoil. On the mountain steppe, the soil contains higher exchangeable Na<sup>+</sup>, exchangeable K<sup>+</sup> and water soluble at topsoil;however, the plant root distribution, OC, N and moisture contents were lower than that of high mountain soil. Because of warmer air and soil temperature in comparison with that of high elevation, active turnover in humic horizon and chemical weathering process lead to higher available nutrients in mountain steppe. The degraded to well humified characteristics of humic acid, moderately developed crumb structure, a higher component of little organic pigment and many intact excrements indicate that the soil decomposition process and biological activity were higher than that of the high mountain steppe. Our finding suggests that the climatic condition dependent on altitude and landform position at the high mountain and mountain of Khuvsgul had a large impact and played a key role in the soil properties and characteristics of steppe dominant by F. lenensis.
基金funded by the National Key Research and Development Program of China(2022YFF130180)the Scientifc and Technological Achievements Commercialization Project of Inner Mongolia(2020CG0064).Confict of interest statement.The authors declare that they have no confict of interest.
文摘Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional genes involved in soil C cycling remain largely unknown.We investigated the effects of warming and increased precipitation on soil C cycling in a temperate desert steppe of Inner Mongolia using metagenomic sequencing.We found that warming reduced plant richness,Shannon-Wiener and Simpson index.In contrast,increased precipitation signifcantly infuenced Shannon-Wiener and Simpson index.Warming reduced soil microbial species by 5.4%while increased precipitation and warming combined with increased precipitation led to increases in soil microbial species by 23.3%and 2.7%,respectively.The relative abundance of Proteobacteria,which involve C cycling genes,was signifcantly increased by warming and increased precipitation.Warming signifcantly reduced the abundance of GAPDH(Calvin cycle)and celF(cellulose degradation)while it enhanced the abundance of glxR(lignin degradation).Increased precipitation signifcantly enhanced the abundance of pgk(Calvin cycle),coxL(carbon monoxide oxidation),malZ(starch degradation),and mttB(methane production).Moreover,a wide range of correlations among soil properties and C cycling functional genes was detected,suggesting the synergistic and/or antagonistic relationships under scenario of global change.These results may suggest that warming is benefcial to soil C storage while increased precipitation negatively affects soil C sequestration.These fndings provide a new perspective for understanding the response of microbial communities to warming and increased precipitation in the temperate desert steppe.
文摘The influence of the short storage periods at different temperatures on the concentrations of extractable soil cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>) and anions (Cl<sup>-</sup>, SO<sub>4</sub>-</sup> and PO<sub>4</sub>-</sup> ) has been investigated in nine soil samples from Nile river terraces at River Nile State, North of Sudan (17.82289 to 17.82389N and 33.99974 to 34.02127E). Each soil extract is divided into three treatments: i) control (immediately analyzed);ii) storage for 10 days and;iii) storage for 30 days. Each treatment is replicated three times: i) storage at 10°C;ii) storage at ambient laboratory temperature (25°C) and;iii) storage at 45°C in incubator. Statistical analysis of results reveals that significant difference are found at level (P -</sup> and PO<sub>4</sub>-</sup> (0.043, 0.002, 0.001, 0.021, 0.004 and 0.001) respectively at 25°C and 45°C and storage periods of 10 and 30 days. In contrast, significant difference is also found at level (P -</sup> concentrations are significantly decreased when the storage period exceeds 10 days and temperature more than 25°C. Depending upon our study results;we conclude that, all extractable inorganic nutrients are clearly affected by storage periods at various temperatures, exception of Na<sup>+</sup>. Most cations and anions are increased significantly with increased of storage period and temperatures. We therefore highly recommend that the extractable inorganic soil nutrients should be rapidly analyzed in order to obtain accurate results;otherwise, the time between extraction and analysis should be carefully recorded which may help considerably interpreting data from various studies.
文摘Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.
文摘A comparative study of soil respiration was conducted between in a semi-arid steppe community and in a wet meadow community in the Xilin River Basin of Nei Mongol. The seasonal pattern, the climatic controls, and the correlations of soil respiration with plant biomass components, were examined for each community. The main results are reported as follows: (1) The seasonal changes in soil respiration in the two communities had similar dynamic patterns (both being of two peaks), ranging from 312.8 to 1738.9 mg C(.)m(-2).s(-1) and from 354.6 to 2235.6 Mg C.m(-2).s(-1) in the growing season for the steppe plot and the meadow plot respectively. The soil respiration rate of the meadow plot was distinctly higher than that of the steppe plot, with the daily averages being 1349.6 mg C-m(-2).s(-1) and 785.9 mg C-m(-2).s(-1) respectively. (2) The correlation between soil respiration rate and soil moisture was much more significant than with temperature for the steppe community, and being on the contrary for the meadow community, reflecting the different effects of the two climatic factors in different habitats. Based on these regressive relations, the total CO2 efflux rate in the growing season in 2001 was estimated as 142.4 g C/m(2) in the steppe plot, and 236.1 g C/m(2) in the meadow plot. (3) There was no evident relation between the total canopy biomass and CO2 evolution rate, but a significant power function relation between the live canopy biomass and CO2 evolution rate in the meadow plot was detected. In the steppe plot, there existed only a weak relation between soil respiration and either live or total canopy biomass.
基金This work was jointly supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX1-SW-01-04) the National Natural Science Foundation of China (Grant No. 40501072) the project on the Carbon Cycle and Driving Mechanisms in the Chinese Terrestrial Ecosystem (Grant No. 2002CB412503).
文摘Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effiuxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 effiux of the Aneurolepidium chinense steppe varied between 356.4 gC m^-2 yr^-1 and 408.8 gC m^-2 yr^-1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m^-2 yr^-1 to 148.6 g Cm^-2 yr^-1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 - 0.85, p 〈 0.05 or p 〈 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10-20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10-20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.
基金supported by the National Natural Science Foundation of China(32171872,31901367)the Key R&D Projects in Ningxia,China(2019BFG02022)+2 种基金the Young Science and Technology Talents Promotion Project(the fifth batch)in Ningxia,Chinathe Agricultural Science and Technology Funding Innovation Project,in Ningxia,China(NGSB-2021-14-03)the Ningxia Natural Science Foundation(2021AAC03015)。
文摘Water is a limiting factor in the restoration and construction of desert steppe.Exploring plant water sources is necessary to understand soil-plant interactions and species coexistence;however,water sources of major plant communities within the desert steppe of Ningxia Hui Autonomous Region,China remain poorly understood.In this study,we analyzed the water uptake of plants in four typical communities:Agropyron mongolicum Keng.;Sophora alopecuroids Linn.;Stipa breviflora Griseb.,and Achnatherum splendens(Trin.)Nevski communities.Stable isotopesδD andδ^(18)O in the xylem of plant and soil water at different soil depths were analyzed.An IsoSource model was used to determine the soil depths from which plants obtained water.Results showed that A.mongolicum community obtained water predominantly from 0–20 and 40–80 cm depth,S.alopecuroids community from 0–20 cm depth,S.breviflora community from 0–40 cm depth,and A.splendens community from 0–20 and 80–140 cm depths.S.alopecuroides had a wider range of soil depths for water extraction,i.e.,utilizing different water sources depending on habitat,and the plasticity of its water uptake pattern determined its role in different communities.Water source of plants relayed heavily on the distribution of their roots.Competition for soil water exists between different plant life forms in the sierozem habitat(A.mongolicum,S.alopecuroids,and S.breviflora communities),and in the sandy soil habitat(A.splendens community).The use of soil water by A.splendens community is more spatially differentiated,and shrubs and herbs can coexist stably.Under the pattern of extended drought period in the future,sierozem habitat may be more favorable for the formation of a dominant monoculture community type of perennial fibrous plants.In aeolian sandy soil habitat,A.splendens had a strong competitive advantage,and the growth of shallow-rooted plants was easily suppressed.
文摘The results of studies of the peculiarities of formation of phytocenoses in environments contact sites of the western and eastern coasts of the Lake Baikal has been showed in this paper. On the base of geobotanic profiling combined with soil one, the structure and dynamics of phytocenoses forming under the conditions of mutual development of light-coniferous taiga forest and of extra zonal steppes. Edaphic conditions and placement of phytocenoses are main trigger factors determining the ways of plant cover development in this part of Lake Baikal basin. We discuss the characteristics properties inherent in the linkage of the dynamics and spatial variability of the vegetation with the change of climate in the Baikal region. The regional conditions of the physiogeographic environment had given rise to structurally highly contrasting plant communities in this region. The increase in yearly mean summertime amounts of rainfall, combined with the rise of yearly mean winter temperatures over the last years were conducive to changes in the spatial structure of vegetation. The boundary between the types of vegetation undergoes smoothing. The upper boundary of forest is altered because of changes of the environment that are responsible for the zonality and properties of vertical zonality of the vegetation on the mountains surrounding Lake Baikal. Changes in the vegetation serve as indicators of climate change as well as providing diagnostic tools for the genesis of the Baikal region’s natural environment.
文摘To establish an assessment of floristic and edaphic characteristics of steppe formations we conducted a phytoecological study on a local scale by comparing the current plant diversity and soil in three (3) stations representative of the vegetation to alfa (Stipa tenacissima L.) located south of Saida (western Algeria). The relations between the station, the vegetation and the characteristics of soils in the steppe are very imperfectly known. This study intends to analyze the relationship between floristic composition and edaphic parameters of the steppe at alfa. Anthropogenic pressures on plant structure are different imbalance resulting in one ecological. The floristic and edaphic data have been the subject of a factorial correspondence analysis (A.F.C). The floristic inventory denotes a regressive dynamics of the formations at alfa passing from one site to another. Thus 39 plant species have been inventoried in the site in good condition, against 26 species for the moderately degraded site and 16 species only for the damaged site. The coupled results between species and edaphic parameters show the relations between the plant diversity and the physico-chemical characteristics of the soils. The statistical analyses do appear a strong correlation between floristic composition, the state of vegetation and the edaphic parameters.