期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Biomass Control via UV Lamp Application and Nutrient Supply Restriction in the Biofiltration of Gaseous VOCs
1
作者 Takashi Higuchi Kokoro Hashizume 《Journal of Environmental Science and Engineering(B)》 CAS 2024年第3期97-104,共8页
Biofiltration may have clogging problems owing to excess biomass growth during the treatment of gaseous pollutants.In this study,we employed an UV(Ultraviolet)lamp and controlled the nutrient supply to conduct a biofi... Biofiltration may have clogging problems owing to excess biomass growth during the treatment of gaseous pollutants.In this study,we employed an UV(Ultraviolet)lamp and controlled the nutrient supply to conduct a biofiltration process for treating 2-butanone(MEK:Methyl Ethyl Ketone)and toluene in a gas stream.Two methods of UV lamp usage(direct and indirect irradiation)and several nutrient supply methods were tested.However,no clear effect was observed with either UV usage.Under the optimal conditions,97%of the MEK and 69%of the toluene gases were removed after 29 s of EBRT(Empty Bed Retention Time).The inlet loads were 18 and 19 mg/(m^(3)·h)for MEK and toluene,respectively.Under these conditions,23 g-N/(m^(3)·day)of nitrate-nitrogen was consumed.Excess biomass growth occurred during simultaneous excess nutrient supply and a persistent irrigation schedule.In this study,we demonstrated the effective use of a dense nitrate solution to deliver an appropriate amount of nutrients and moisture,and the optimal irrigation frequency was four times per week. 展开更多
关键词 BIOFILTRATION gaseous VOCs(Volatile Organic Compounds) nutrient supply UV lamp ozone
下载PDF
River-gulf system--the major location of marine source rock formation 被引量:7
2
作者 Deng Yunhua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期281-289,共9页
Petroleum was generated from sedimentary rocks. The world's oldest oil source rock so far was found in Proterozoic rocks. Since then, 73% to 81% of the earth's surface has been covered with sedimentary rocks. Howeve... Petroleum was generated from sedimentary rocks. The world's oldest oil source rock so far was found in Proterozoic rocks. Since then, 73% to 81% of the earth's surface has been covered with sedimentary rocks. However, only quite a limited area is rich in oil and gas. It is found that source rocks have controlled oil and gas distribution, and they are mainly formed in two systems: (1) river-lake systems and (2) river-gulf systems. Phytoplankton is an important source of kerogen, the blooming of which is strongly dependent on nutrients. Rivers are the major nutrient provider for basins. Rivers around lakes and an undercompensation (where the sedimentation rate is less than the rate of basin subsidence) environment provide favorable conditions for phytoplankton blooming in lakes. Gulfs are usually located at the estuary of big rivers, characterized by restricted current circulation and exchange with the open sea, which benefit maintaining the nutrient density, phytoplankton levels and organic matter preservation. The river-gulf system is the most favorable place for marine source rock development. Most of the world famous marine petroleum-rich provinces are developed from river-gulf systems in geological history, such as the Persian Gulf Basin, Siberian Basin, Caspian Basin, North Sea, Sirte Basin, Nigerian Basin, Kwanza Basin, Gulf of Mexico, Maracaibo Basin and the Eastern Venezuelan Basin. 展开更多
关键词 nutrient supply river-gulf system marine source rock oil-bearing basin
下载PDF
Inter-and intra-specific phenotypic variation of ecological stoichiometric traits in a mixed-oak secondary forest in China 被引量:2
3
作者 Yueyao Feng Xuan Li +4 位作者 Biyao Zhou Rong Hu Huanchao Zhang Jiading Yang Yanming Fang 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2333-2347,共15页
Ecological stoichiometry provides a framework for the balance and flow of elements between organisms and ecosystems.Elemental phenotypes have an important influence on the environmental adaptation and ecological evolu... Ecological stoichiometry provides a framework for the balance and flow of elements between organisms and ecosystems.Elemental phenotypes have an important influence on the environmental adaptation and ecological evolution of plants.There have been few reports on inter-and intra-specific phenotypic variations of ecological stoichiometric traits for congeneric species in a mixed forest although such variations are well-documented at the species level at global,regional and local scales.In this study,total carbon(TC),nitrogen(TN),phosphorus(TP)and potassium(TK)were measured in leaves and the elemental phenotypes were statistically analyzed in four species of oaks—Quercus fabri,Q.serrata var.glandulifera,Q.acutissima and Q.variabilis—in a mixed-oak secondary forest in Yushan,Jiangsu,China.The average element concentrations in the four oak species were not relatively higher than previously reported for oaks from world and Chinese flora.Ecological stoichiometry traits were correlated with tree height and diameter at breast height,indicating that phosphorous and potassium were positively correlated with tree size,while carbon was negatively correlated,especially the relationship between oak growth and total carbon or total phosphorus was obvious,and the study concluded that this was because plant growth depended on phosphorus storage and had opposite effects on leaf carbon accumulation.Based on tree plasticity index and the coefficient of variation,there was medium variation in element concentrations.The plasticity index of total carbon levels was the lowest,and that of potassium the highest.Principal component analysis and cluster analysis showed that the intra-specific variation among the four oak species was higher than inter-specific variation.From the perspective of nutrient supply and ecological adaptation,this study creates a foundation for the management of secondary oak forest stands. 展开更多
关键词 Ecological stoichiometry QUERCUS Elemental phenotype Intra-specific variation Inter-specific variation Ecological evolution nutrient supply
下载PDF
Spatial contrast in phytoplankton, bacteria and microzooplankton grazing between the eutrophic Yellow Sea and the oligotrophic South China Sea 被引量:2
4
作者 张亚锋 王旭涛 殷克东 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第1期92-104,共13页
Three cruises were conducted to investigate the distributions of nutrients,chlorophyll a(Chla),new and regenerated primary production,bacterial abundance and production,and microzooplankton grazing rates in the Yellow... Three cruises were conducted to investigate the distributions of nutrients,chlorophyll a(Chla),new and regenerated primary production,bacterial abundance and production,and microzooplankton grazing rates in the Yellow Sea(YS)and the South China Sea(SCS)during March and May.As the water column moved from low to high temperature,weak to strong stratification and high to low nutrients from the YS to the SCS,Chl-a,primary production and bacterial biomass decreased.In contrast,bacterial production,microzooplankton grazing and size preference increased from the YS to the SCS.The increasing grazing activity and decreasing f-ratio from the YS to the SCS suggest roles of regenerated nutrients in the supporting the community increased and more bacteria played important roles in the carbon flow in the oligotrophic SCS than in the eutrophic YS.These variabilities force the classical food chain dominated community in the eutrophic waters into the microbial loop,which is dominant in oligotrophic waters.As nutrients decrease,temperature and grazing activity increase from the YS to the SCS.The increasing ratio of integrated bacterial production to integrated primary production indicates that communities change from autotrophy to heterotrophy and waters change from a carbon sink to a carbon source. 展开更多
关键词 bacterial production primary production nutrient supply grazing activity Yellow Sea South China Sea
下载PDF
Does nitrogen fertilization impact nonstructural carbohydrate storage in evergreen Podocarpus macrophyllus saplings? 被引量:1
5
作者 Renshan Li Jianming Han +5 位作者 Liqiong Zhu Lijun Zhao Xiangling Huang Mingyue Zhang Qingpeng Yang Weidong Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1653-1661,共9页
Nonstructural carbon(NSC),which represents the relationship between the carbon source and carbon sink,is an important factor that reflects the functions and performance of a tree.However,little is known regarding the ... Nonstructural carbon(NSC),which represents the relationship between the carbon source and carbon sink,is an important factor that reflects the functions and performance of a tree.However,little is known regarding the timeseries responses of NSC storage in evergreen species to different nitrogen(N)fertilization regimes.This study,which was based on a pot experiment,examined the response of the NSC(soluble sugars and starch storage to different N addition intensities[light N addition(LN):6.5 g N m^(-2)a^(-1);moderate N addition(MN):13.0 g N m^(-2)a^(-1);and heavy N addition(HN):26.0 g N m^(-2)a^(-1))]in saplings of the evergreen species Podocarpus macrophyllus.Our results showed that the net photosynthetic rate(P_(n))under MN was significantly higher than that under LN,but was comparable to that under HN.Moreover,saplings subject to MN had a significant higher leaf biomass than that to LN and HN.These results indicated that the C supply via photosynthesis under MN was greater than that under LN and HN.The NSCs reserve under MN was considerable with that under LN,which suggested that saplings in MN group consumed higher and stored lower properties of NSCs than those in LN group.However,saplings under HN stored higher properties of NSCs than those under MN considering that no difference in NSCs pools was found between the two treatments.The leaf N concentrations were found in the increasing sequence of LN<MN<HN,whilst the leaf chlorophyll concentration under HN was obviously lower than that under MN.The growth rate under MN was higher than that under LN and HN.We concluded that the NSCs allocation between con-sumption and reserve in P.macrophyllus saplings depended on soil N availability,and an excessive N addition to soil favors the storage rather than the consumption of NSCs by plants. 展开更多
关键词 PHOTOSYNTHATE ALLOCATION Source-sink balance Plant nutrient supply Podocarpus macrophyllus saplings
下载PDF
N-Exponential Fertilization Could Affect the Growth and Nitrogen Accumulation of Metasequoia glyptostroboides Seedling in a Greenhouse Environment
6
作者 Jiasen Wu Genping Tong +3 位作者 Rui Guo Zihao Ye Jin Jin Haiping Lin 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第10期2211-2220,共10页
Metasequoia glyptostroboides(M.glyptostroboides)is a unique plant species related to relic flora in China.It plays a positive role in afforestation and its long-term protection with high paleoclimate research value.Ho... Metasequoia glyptostroboides(M.glyptostroboides)is a unique plant species related to relic flora in China.It plays a positive role in afforestation and its long-term protection with high paleoclimate research value.However,due to the nutrients-supply deficiency,it is a big challenge to cultivate the high-quality seedlings of M.glyptostroboides.In this study,a pot experiment in a greenhouse environment was carried out to identify the effect of N-exponential fertilization on the growth and nutrient distribution of M.glyptostroboides seedling.The M.glyptostroboides rooted seedlings with 12-month growth were chosen.Different N fertilizer levels with conventional fertilization(CF:5.0 g seedling^(−1)),exponential fertilization including EF1,EF2,EF3 and EF4 were determined.The relevant growth indexes were measured after 210-day growth.The results indicated that non-significant differences in seedlings’height and ground diameter were found among the above treatments(P>0.05);At the same time,N-exponential fertilization promoted the M.glyptostroboides’s biomass in different organs(P<0.05),with the maximum total biomass under EF3 treatment.The N accumulation in root and stem of the N-exponential fertilization treatments were increased in to some extent(P<0.05).The maximum N accumulation was also found under EF3 treatment.Therefore,steady-state nutrition and superior growth performance of M.glyptostroboides could be obtained by N-exponential fertilization of 5.0 g cutting^(−1). 展开更多
关键词 Metasequoia glyptostroboides seedling nitrogen exponential fertilization plant growth BIOMASS nutrient supply
下载PDF
Influence of Watering Solution and Phenotype on the Growth of <i>in Vitro</i>Propagated Pineapple (Smooth Cayenne Cultivar) Plantlets during Acclimatization
7
作者 Arnaud Agbidinoukoun Gaston C. Ouikoun +7 位作者 Toussaint Mikpon Gatien T. Kamade Bienvenu T. Badou Richmy C. B. Aïsso Serge S. Houedjissin Jerome A. Houngue René C. Dossoukpevi Corneille Ahanhanzo 《Agricultural Sciences》 2021年第11期1215-1230,共16页
Pineapple is the first fruit crop cultivated in south Benin that greatly contributes for food and nutritional security and farmers’ income. But the lack of homogenous planting material constitutes the major constrain... Pineapple is the first fruit crop cultivated in south Benin that greatly contributes for food and nutritional security and farmers’ income. But the lack of homogenous planting material constitutes the major constraint for improving pineapple yield. <em>In vitro</em> micropropagation is now used in the production of homogenous and free disease planting materials of pineapple. However, the acclimatization to natural condition of pineapple plantlets is an important step in planting material production of this crop. Here, we determined the intrinsic and extrinsic factors which influence the behavior of plantlets during the acclimatization process. For this purpose, plantlets from different categories were selected, trimmed and planted on a horticultural substrate made up of potting soil, white sawdust and compost previously sterilized. The plantlets were then incubated in under acclimatization greenhouse with average temperature of 29<span style="white-space:nowrap;">&#730;</span>C and 70.2% of humidity. A batch of plantlets was subjected to two different watering solutions: Shive and Robbins solution and NPK 14-6-5 foliar fertilizer. The results obtained initially showed high rate (100%) of survival and growth of the plantlets watered with Shive and Robbins solution against 50% of the plantlets watered with the foliar fertilizer solution. In addition, the plantlets with spread pores exhibiting the characteristics of which the number of leaves varies between 9 and 11, the weight between 1.2 and 1.5 g, the size of 4.5 to 5.5 cm, and a good junction between the aerial part and the root system were those which were successfully grown in acclimatization phase under greenhouse, unlike plantlets with erected pores having lower success rate. This study goes a long way in providing good procedures of acclimatization of homogenous and free disease planting material of pineapple to the famers. 展开更多
关键词 Ananas comosus var. comosus Plantlets Morphology nutrient supply Pineapple Acclimatization In Vitro Tissue Culture
下载PDF
Contribution of Root Proliferation in Nutrient-Rich Soil Patches to Nutrient Uptake and Growth of Maize 被引量:19
8
作者 LI Hong-Bo ZHANG Fu-Suo SHEN Jian-Bo 《Pedosphere》 SCIE CAS CSCD 2012年第6期776-784,共9页
Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year fie... Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages. 展开更多
关键词 biomass growth stage intensive farming system localized nutrient supply root length
原文传递
Nutrient Efficiency of Winter Oilseed Rape in an Intensive Cropping System: A Regional Analysis 被引量:1
9
作者 LI Hui LU Jianwei +2 位作者 REN Tao LI Xiaokun CONG Rihuan 《Pedosphere》 SCIE CAS CSCD 2017年第2期364-370,共7页
Fertilization is essential for oilseed rape because it is sensitivity to nutrient deficiency, especially for winter oilseed rape(Brassica napus L.). To investigate regional nutrient efficiency and nutrient uptake-yiel... Fertilization is essential for oilseed rape because it is sensitivity to nutrient deficiency, especially for winter oilseed rape(Brassica napus L.). To investigate regional nutrient efficiency and nutrient uptake-yield relationship of winter oilseed rape in an intensive cropping system, this study used data from 619 site-year on-farm experiments carried out in the winter oilseed rape planting area of the Yangtze River Basin, China from 2005 to 2010, with large yield in the range of 179–4 470 kg ha^(-1). Currently recommended application rates of N, P and K fertilizers increased rapeseed yield at different levels of soil indigenous nutrient supply(INS) in this region. Boundary values of plant nutrient uptake were established to analyze the nutrient uptake-yield relationship of winter oilseed rape(internal nutrient efficiency), i.e., 128 kg N ha^(-1), 24 kg P ha^(-1), and 122 kg K ha^(-1). The internal nutrient efficiency declined by 48.2%–64.1% when nutrient uptake exceeded the boundary value, resulting in excessive nutrient uptake(i.e., low yield response with high nutrient uptake), especially for K. In the intensive cropping system, agronomic efficiencies of N, P, and K were 5.9, 3.4, and3.6 kg kg^(-1), and recovery efficiencies of N, P, and K were 35.6%, 24.1%, and 36.8%, respectively. These findings showed that the fertilization rate should be optimized by considering INS, nutrient status, and nutrient efficiency of winter oilseed rape. In this study,considering the lower yield improvement to high K uptake levels and low K fertilizer efficiency, application rate of K fertilizer should be reduced since soil K deficiency has already been mitigated. 展开更多
关键词 agnomic efficiency FERTILIZATION indigenous nutrient supply internal nutrient efficiency nutrient uptake recoveryefficiency regional scale YIELD
原文传递
Humic substances:Structure,function and benefits for agroecosystems—a review 被引量:2
10
作者 Jaya TIWARI AL RAMANATHAN +1 位作者 Kuldeep BAUDDH John KORSTAD 《Pedosphere》 SCIE CAS CSCD 2023年第2期237-249,共13页
The increasing global demand for food production,often causing excessive use of chemical fertilizers,has led to the deterioration of soil health.Immediate action is required to restore soil health in a sustainable man... The increasing global demand for food production,often causing excessive use of chemical fertilizers,has led to the deterioration of soil health.Immediate action is required to restore soil health in a sustainable manner.This review advocates switching to use of organic matter(manure and compost)that contains vital nutrients for plant growth and helps restore soil health.Humic substances(HSs),derived from degraded plant remains and found ubiquitously in nature,are an important source of organic matter.The application of HSs to soil enhances essential nutrient supply and assimilation of atmospheric CO_(2)due to increasing biomass yield.Promoting HS application globally can help lower atmospheric CO_(2)concentrations and create a sustainable agricultural practice.However,the process of humification and the molecular structure of HSs remain poorly understood subjects in soil science.Therefore,it is imperative to understand the mechanisms underlying various roles of HSs in agroecosystems.This review offers an insight into the various structural and functional aspects of HSs,particularly fulvic acid and humic acid.The dynamic and interactive nature of HSs creates a framework for sustainable agriculture. 展开更多
关键词 fulvic acid humic acid HUMIN HUMUS nutrient supply soil health sustainable agriculture
原文传递
Metabolic reprogramming in tumors:Contributions of the tumor microenvironment 被引量:4
11
作者 Andrew N.Lane Richard M.Higashi Teresa W-M.Fan 《Genes & Diseases》 SCIE 2020年第2期185-198,共14页
The genetic alterations associated with cell transformation are in large measure expressed in the metabolic phenotype as cancer cells proliferate and change their local environment,and prepare for metastasis.Qualitati... The genetic alterations associated with cell transformation are in large measure expressed in the metabolic phenotype as cancer cells proliferate and change their local environment,and prepare for metastasis.Qualitatively,the fundamental biochemistry of cancer cells is generally the same as in the untransformed cells,but the cancer cells produce a local environment,the TME,that is hostile to the stromal cells,and compete for nutrients.In order to proliferate,cells need sufficient nutrients,either those that cannot be made by the cells themselves,or must be made from simpler precursors.However,in solid tumors,the nutrient supply is often limiting given the potential for rapid proliferation,and the poor quality of the vasculature.Thus,cancer cells may employ a variety of strategies to obtain nutrients for survival,growth and metastasis.Although much has been learned using established cell lines in standard culture conditions,it is becoming clear from in vivo metabolic studies that this can also be misleading,and which nutrients are used for energy production versus building blocks for synthesis of macromolecules can vary greatly from tumor to tumor,and even within the same tumor.Here we review the operation of metabolic networks,and how recent understanding of nutrient supply in the TME and utilization are being revealed using stable isotope tracers in vivo as well as in vitro. 展开更多
关键词 Cancer metabolism nutrient supply Stable isotope resolved metabolomics Tumor microenvironment Metabolic flux
原文传递
Effects of endophyte infection on the competitive ability of Achnatherum sibiricum depend on endophyte species and nitrogen availability
12
作者 Yong Zhou Xia Li +4 位作者 Hui Liu Yubao Gao Wade J.Mace Stuart D.Card Anzhi Ren 《Journal of Plant Ecology》 SCIE CSCD 2019年第5期815-824,共10页
Aims the leaves of almost all terrestrial plant species are colonized by endophytic fungi.compared to agronomic grasses,which usually harbor few endophytes,native grasses generally possess greater endophyte species di... Aims the leaves of almost all terrestrial plant species are colonized by endophytic fungi.compared to agronomic grasses,which usually harbor few endophytes,native grasses generally possess greater endophyte species diversity.Existing studies examining endophyte effects on natural grasses under competition normally considered the infection status(infected or uninfected),and rarely considered endophyte species.Methods We examined the effects of endophyte infection and of endophyte species on the interspecific competitive ability of a subdominant species,Achnatherum sibiricum,at two nitrogen levels(high ni-trogen and low nitrogen).Achnatherum sibiricum plants infected by two different species of endophyte(Epichloësibirica and E.gansuensis)and uninfected plants were grown in monoculture and binary mixtures with a dominant species,Stipa grandis(six individuals per species for monocultures and three+three in-dividuals of each species in mixtures).Shoot and root biomass,tiller number and total phenolic concentration were measured after 3 months.Moreover,the aggressivity index was calculated to compare the competitive ability of A.sibiricum relative to S.grandis.Important Findings Both E.gansuensis(Eg)-and E.sibirica(Es)-infected A.sibiricum plants showed a greater competitive ability than the uninfected plants under high nitrogen supply,while the opposite result oc-curred under low nitrogen supply.At high nitrogen levels,Eg plants had a higher tiller number and a greater shoot biomass in-hibitory effect on S.grandis than Es plants had when growing in mixture,while Es plants showed better root growth performance than Eg and uninfected plants under mixture conditions at all ni-trogen levels.A higher concentration of phenolic compounds in Eg plants than in Es plants might contribute to the higher inhibi-tory effect of Eg plants on competing plants.Our study indicates that the interaction between endophyte infection and nitrogen availability can alter the competitive ability of the host plant A.sibiricum but that these two endophyte species work in different ways,which may influence the coexistence of A.sibiricum with the dominant species. 展开更多
关键词 Achnatherum sibiricum Epichloëendophytes interspecific competition native grass nutrient supply
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部