期刊文献+
共找到33,423篇文章
< 1 2 250 >
每页显示 20 50 100
Response of Rice Growth and Nutrient Absorption in a SalineAlkali Paddy to Different Nitrogen Fertilizer Applications
1
作者 WANG Xinyi ZHU Hui +2 位作者 YAN Baixing Brian SHUTES ZENG Yuan 《Rice science》 SCIE CSCD 2024年第3期245-250,I0011-I0017,共13页
Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-... Nitrogen(N),phosphorus(P)and carbon(C)are essential nutrients for rice growth and development,but the response of nutrient absorption by rice plants to different types of nitrogen fertilizer(N-fertilizer)under saline-alkali conditions is unclear.This study conducted a 147-day field-scale experiment to evaluate rice biomass and nutrient absorption capacity with five N-fertilizer applications.The results showed that the biomass. 展开更多
关键词 nutrient ALKALI ALKALI
下载PDF
Litter production and leaf nutrient concentration and remobilization in response to climate seasonality in the central Amazon
2
作者 Ricardo Antonio Marenco Saul Alfredo Antezana-Vera +1 位作者 Daniela Pereira Dias Luiz Antonio Candido 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期131-141,共11页
Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seas... Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon.This study meas-ured litterfall production,leaf nutrient remobilization,and leaf area index on a forest plateau in the central Amazon.Litterfall was measured at monthly intervals during 2014,while nitrogen,phosphorus,potassium,calcium and mag-nesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons,and remobilization rates determined.Leaf area index was also recorded in the dry and rainy seasons.Monthly litterfall varied from 33.2(in the rainy season)to 87.6 g m^(-2) in the dry season,while leaf area index increased slightly in the rainy season.Climatic seasonality had no effect on concentrations of nitrogen,calcium,and magnesium,whereas phosphorous and potassium responded to rainfall seasonality oppositely.While phosphorous increased,potassium decreased during the dry season.Over seasons,nitrogen,potassium,and phosphorous decreased in leaf litter;calcium increased in leaf litter,while magnesium remained unaffected with leaf aging.Regardless,the five nutrients had similar remobilization rates over the year.The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change. 展开更多
关键词 THROUGHFALL nutrient cycling Climatic seasonality Leaf mass per area
下载PDF
Characterization of Nutrients,Heavy Metals,Petroleum and Their Impact on Phytoplankton in Laizhou Bay:Implications for Environmental Management and Monitoring
3
作者 WANG Kai ZHAO Linlin +3 位作者 ZHU Yugui YANG Liqiang WANG Yunfeng HONG Xuguang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期822-834,共13页
The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petro... The Laizhou Bay(LB)represents a substantial ecological area that is vulnerable to human activities and confronts diverse environmental challenges.This study provides a comprehensive characterization of nutrients,petroleum,heavy metals,and phytoplankton community structure across seven distinct areas in LB.The results indicate relatively high concentrations of NO_(2)-N,SiO_(4)-Si,and NO_(3)-N in the Southwest Laizhou Bay(SWLB)and Huanghe River Estuary(HRE).In contrast,the East Laizhou bay(ELB)and the North of Huanghe River Estuary(NHRE)exhibit the highest concentrations of heavy metals(As,Cr and Hg).The areas with high phytoplankton density and community diversity are mainly located in the SWLB.After adjusting for basic environmental factors,phytoplankton density and Margalef richness index D are significantly associated with nutrients(NO_(3)-N,NO_(2)-N,NH_(4)-N,SiO_(4)-Si),and heavy metal(Cr)concentrations.We highlight that,in addition to Xiaoqinghe River,nutrients brought by the Mihe River in the SWLB and heavy metal(Cr)pollution in the ELB resulting from industrial and mining activities along the coast significantly influence phytoplankton growth and community structure.Therefore,it is recommended that more monitoring and management efforts be focused on these regions in the future. 展开更多
关键词 Huanghe River Estuary Laizhou Bay nutrientS heavy metals PHYTOPLANKTON BIODIVERSITY
下载PDF
Unexpected Diversity in Ecosystem Nutrient Responses to Experimental Drought in Temperate Grasslands
4
作者 Biying Qiu Niwu Te +8 位作者 Lin Song Yuan Shi Chuan Qiu Xiaoan Zuo Qiang Yu Jianqiang Qian Zhengwen Wang Honghui Wu Wentao Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期831-841,共11页
The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a sig... The responses of ecosystem nitrogen (N) and phosphorus (P) to drought are an important component of globalchange studies. However, previous studies were more often based on site-specific experiments, introducing a significantuncertainty to synthesis and site comparisons. We investigated the responses of vegetation and soil nutrientsto drought using a network experiment of temperate grasslands in Northern China. Drought treatment (66%reduction in growing season precipitation) was imposed by erecting rainout shelters, respectively, at the driest,intermediate, and wettest sites. We found that vegetation nutrient concentrations increased but soil nutrient concentrationsdecreased along the aridity gradient. Differential responses were observed under experimentaldrought among the three grassland sites. Specifically, the experimental drought did not change vegetation andsoil nutrient status at the driest site, while strongly reduced vegetation but increased soil nutrient concentrationsat the site with intermediate precipitation. On the contrary, experimental drought increased vegetation N concentrationsbut did not change vegetation P and soil nutrient concentrations at the wettest site. In general, the differentialeffects of drought on ecosystem nutrients were observed between manipulative and observationalexperiments as well as between sites. Our research findings suggest that conducting large-scale, consistent, andcontrolled network experiments is essential to accurately evaluate the effects of global climate change on terrestrialecosystem bio-geochemistry. 展开更多
关键词 Climate change drought experiment PRECIPITATION nutrient cycles
下载PDF
Effect of wall-disruption on nutrient composition and in vitro digestion of camellia and lotus bee pollens
5
作者 Yuan Yuan Shun Zhong +3 位作者 Zeyuan Deng Guangyan Li Jinwu Zhang Hongyan Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1567-1577,共11页
The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were i... The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were investigated,and their antioxidant activities and in vitro digestion were explored in this study.Results showed that the content of nutrients in bee pollen increased after wall disruption.Among them,fat content increased by 22.55%-8.31%,protein content increased by 0.54%-4.91%,starch content increased by 36.31%-48.64%,soluble sugar content increased by 20.57%-29.67%,total phenolic acid content increased by 11.73%-86.98%and total flavonoids content increased by 14.29%-24.79%.At the same time,the antioxidant activity increased by 14.84%-46.00%.Furthermore,the active components such as phenolic compounds in the wall-disruption bee pollen were more readily to be released during the in vitro digestion,and easier to be absorbed because of their higher bioaccessibility.Antioxidant activities during in vitro digestion were also improved in walldisruption bee pollen.These findings provide evidence that bee pollen wall disruption was suggested,thus,it is more conducive to exerting the value of bee pollen in functional foods. 展开更多
关键词 Bee pollen nutrientS Wall disruption Phenolic compounds In vitro digestion
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
6
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 nutrientS LEACHING Saline Water Soil Acidity Soil Alkalinity
下载PDF
Dynamics and genetic regulation of macronutrient concentrations during grain development in maize
7
作者 Pengcheng Li Shuangyi Yin +7 位作者 Yunyun Wang Tianze Zhu Xinjie Zhu Minggang Ji Wenye Rui Houmiao Wang Chenwu Xu Zefeng Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期781-794,共14页
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an... Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize. 展开更多
关键词 MAIZE nutrient concentration unconditional QTL mapping conditional QTL mapping dynamic trait
下载PDF
Impact of sourdough fermentation on nutrient transformations in cereal-based foods:Mechanisms,practical applications,and health implications
8
作者 Zhen Wang Luyang Wang 《Grain & Oil Science and Technology》 CAS 2024年第2期124-132,共9页
Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransfor... Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods. 展开更多
关键词 Sourdough fermentation Lactic acid bacteria PROTEOLYSIS Starch hydrolysis Low-GI nutrientS
下载PDF
Large-scale interplant exchange of macromolecules between soybean and dodder under nutrient stresses
9
作者 Jingxiong Zhang Shalan Li +9 位作者 Wenxing Li Zerui Feng Shuhan Zhang Xijie Zheng Yuxing Xu Guojing Shen Man Zhao Guoyan Cao Xuna Wu Jianqiang Wu 《Plant Diversity》 SCIE CAS CSCD 2024年第1期116-125,共10页
Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adap... Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses.In this study,we used transcriptomics and proteomics to analyze how soybean(Glycine max)and its parasitizing dodder(Cuscuta australis)respond to nitrate and phosphate deficiency(-N and-P).After-N and-P treatment,the soybean and dodder plants exhibited substantial changes of transcriptome and proteome,although soybean plants showed very few transcriptional responses to-P and dodder did not show any transcriptional changes to either-N or-P.Importantly,large-scale interplant transport of mRNAs and proteins was detected.Although the mobile mRNAs only comprised at most 0.2%of the transcriptomes,the foreign mobile proteins could reach 6.8%of the total proteins,suggesting that proteins may be the major forms of interplant communications.Furthermore,the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated.This study provides new insight into the communication between host plants and parasites under stress conditions. 展开更多
关键词 CUSCUTA Mobile molecules nutrient deficiency Host plant-parasitic plant interaction Interplant transport Systemic signaling
下载PDF
Rhizobium Inoculation and Micronutrient Addition Influence the Growth,Yield,Quality and Nutrient Uptake of Garden Peas(Pisum sativum L.)
10
作者 MdAbdul Quddus MdAtaur Rahman +8 位作者 Razu Ahmed Mohammad Eyakub Ali Khokan Kumer Sarker MdAlamgir Siddiky Mohibur Rahman Lamya Ahmed Alkeridis Samy Sayed Ahmed Gaber Akbar Hossain 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期901-922,共22页
Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity ... Garden pea productivity and qualities are hampered in zinc(Zn),boron(B),and molybdenum(Mo)deficient soil.Thus,the combination of micronutrients(i.e.,Zn,B,and Mo)and rhizobium is necessary to increase the productivity and quality of garden peas,since this management for garden peas is neglected in Bangladesh.Therefore,the present study was made to assess the effectiveness of rhizobium inoculant singly or in combination with the micronutrients(i.e.,Zn,B,and Mo)on growth,yield,nutrient uptake,and quality of garden peas.Treatments were:T_(1)=Control,T_(2)=Rhizobium inoculation at 50 g/kg seed,T_(3)=T_(2)+Zn_(3)Mo1,T_(4)=T_(2)+B_(2)Mo1,T_(5)=T_(2)+Zn_(3)B_(2),T_(6)=T_(2)+Zn_(3)B_(2)Mo1 and T_(7)=Zn_(3)B_(2)Mo1.All treatments were arranged in a randomized complete block design and repeated all treatments in three times.The application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)with inoculation of Rhizobium at 50 g kg^(−1)seed(T_(6))facilitated to increase of 44.8%in the green pod and 29.7%seed yield over control.The same treatment contributed to attaining the maximum nodulation(25.3 plant^(−1)),Vitamin C(43.5 mg 100 g^(−1)),protein content(22.2%),and nutrient uptake as well as accumulation in garden peas.Among all treatment combinations,treatment T_(6)was found superior to others based on microbial activities,soil fertility,and profitability.The results of the study found that the application of 3 kg Zn,2 kg B,and 1 kg Mo ha^(−1)in combination with Rhizobium inoculation(50 g kg^(−1)seed)can improve the yield and quality of garden peas.The results of the study have the potential for the areas,where there is no use of Rhizobium inoculant or Zn,B,and Mo fertilizer for cultivation of garden pea. 展开更多
关键词 NODULATION nutrient content Pisum sativum L. PROFITABILITY RHIZOBIUM Zn B Mo
下载PDF
A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage
11
作者 Fubing Liao Xiangqian Feng +6 位作者 Ziqiu Li Danying Wang Chunmei Xu Guang Chu Hengyu Ma Qing Yao Song Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期711-723,共13页
Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth sta... Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage. 展开更多
关键词 dynamic model of deep learning UAV rice panicle initiation nutrient level diagnosis image classification
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields
12
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
The link between dietary nutrients intake and cardiovascular diseases in cold regions
13
作者 Rennan Feng Qianqi Hong +5 位作者 Jingjing Cao Jian Li Lanxin Deng Jing Wang Yang Zhao Cheng Wang 《Frigid Zone Medicine》 2024年第1期1-11,共11页
Background:The cold winter weather in northern China influences the dietary habits of its residents,contributing to a heightened risk of cardiovascular disorders,such as hypertension and coronary heart disease.Key fac... Background:The cold winter weather in northern China influences the dietary habits of its residents,contributing to a heightened risk of cardiovascular disorders,such as hypertension and coronary heart disease.Key factors include low vegetable consumption and high salt and fat intakes.This study aims to investigate the relationships between northern dietary nutrient intake in northern China and cardiovascular disorders during the winter season.Methods:A food frequency questionnaire tailored to the actual eating habits in northern China was designed.Retrospective data from 955 Chinese adults were collected from November to March between 2014 to 2023.Logistic regression was employed to analyze the relationship between dietary nutrients and cardiovascular diseases,with model performance assessed using receiver operating characteristic(ROC)curves.Results:Adjusted for gender,age,and body mass index(BMI),an inverse association was observed between vitamin A(OR=0.706,95%CI:0.550,0.907),nicotinic acid(OR=0.584,95%CI:0.447,0.762),phosphorus(OR=0.777,95%CI:0.608,0.994),selenium(OR=0.719,95%CI:0.560,0.923),zinc(OR=0.683,95%CI:0.531,0.880),methionine(OR=0.730,95%CI:0.569,0.936),arginine(OR=0.753,95%CI:0.588,0.964),lysine(OR=0.706,95%CI:0.550,0.907),aspartic acid(OR=0.730,95%CI:0.569,0.936)and hypertension.Additionally,a negative association was found between niacin(OR=0.752,95%CI:0.597,0.946)and coronary heart disease.Conversely,a positive association was identified between iodine and hypertension(OR=1.305,95%CI:1.020,1.669)and coronary heart disease(OR=1.301,95%CI:1.037,1.634).Conclusion:Our study suggests that maintaining a balanced dietary intake of vitamin A,niacin,phosphorus,selenium,zinc,methionine,arginine,lysine,and aspartic acid can be beneficial in preventing hypertension.Adequate niacin intake is associated with a lower risk of coronary heart disease.However,excessive iodine intake may contribute to hypertension and coronary heart disease. 展开更多
关键词 nutrientS NORTHERN HYPERTENSION coronary heart disease COLD
下载PDF
Litter Productivity and Nutrient Return Characteristics of Three Typical Forest Stands in Golden Mountain
14
作者 Fengchen Yan Jiang Zhu +2 位作者 Juyang Wu Jinshi Chen Zijun Tian 《Open Journal of Applied Sciences》 2024年第2期353-370,共18页
Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study i... Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study in southwest Hubei Province and carbon sink function of the whole forest ecosystem. Methods: Three typical forest stands (Chinese fir plantation, Cryptomeria fortunei plantation and evergreen and deciduous broad-leaved mixed forest) in Golden Mountain Forest Farm in southwest Hubei Province were investigated and monitored continuously for the litter types and productivity and nutrient return. Results: The annual litter productivity of the three forest stands ranged from 161.77 to 396.26 kg·hm<sup>-2</sup>;Litters of branches, leaves and reproductive organs accounted for 14.14% - 20.85%, 33.26% - 78.33%, 7.52% - 42.18% of the total, respectively;The litter productivity and total litter productivity of each composition in the three forest stands show unimodal or bimodal changes over months, and the total litter productivity reached the highest value in January, April and October respectively. For different nutrient contents of the three forest stands, the common feature is C > N. The order of nutrient return amount from greatest to least is evergreen and deciduous broad-leaved mixed forest, Cryptomeria fortunei plantation and Chinese fir plantation. For different nutrient return amounts, the common feature is C > N, and the nutrient return amounts are 76.51-180.69 kg·hm<sup>-2</sup> and 2.3 - 5.71 kg·hm<sup>-2</sup> respectively. Conclusion: The annual litter productivity and nutrient return amount of the evergreen and deciduous broad-leaved mixed forest are the highest among the three forest stands. Therefore, protecting the evergreen and deciduous broad-leaved mixed forest and studying the litter changes of Chinese fir plantation and Cryptomeria fortunei plantation are of far-reaching significance for the development of sustainable forest management in this region and the further improvement of the carbon sequestration function of the whole forest ecosystem. 展开更多
关键词 Golden Mountain Litter Productivity nutrient Return Amount nutrient Content
下载PDF
Inversion tillage with straw incorporation affects the patterns of soil microbial co-occurrence and multi-nutrient cycling in a Hapli-Udic Cambisol 被引量:1
15
作者 CHEN Xu HAN Xiao-zeng +4 位作者 WANG Xiao-hui GUO Zhen-xi YAN Jun LU Xin-chun ZOU Wen-xiu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1546-1559,共14页
Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be th... Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol. 展开更多
关键词 SOIL microbiome microbial CO-OCCURRENCE networks STRAW amendment SOIL nutrient
下载PDF
Transfer Learning-Based Image Recognition of Nitrogen and Potassium Nutrient Stress in Rice 被引量:1
16
作者 CHEN Lisu LI Wei +2 位作者 FENG Daolun WU Huafeng WANG Ke 《Rice science》 SCIE CSCD 2023年第2期100-103,I0014-I0019,共10页
Nitrogen(N) and potassium(K) are essential elements for rice growth. When N and K are in deficient rice, specific symptoms appear on the leaves that are similar and difficult to distinguish with the naked eye.
关键词 nutrient POTASSIUM POTASSIUM
下载PDF
Dietary fibers with low hydration properties exacerbate diarrhea and impair intestinal health and nutrient digestibility in weaned piglets 被引量:1
17
作者 Shuangbo Huang Zhijuan Cui +6 位作者 Xiangyu Hao Chuanhui Cheng Jianzhao Chen Deyuan Wu Hefeng Luo Jinping Deng Chengquan Tan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期771-791,共21页
Background:This study aimed to investigate the hydration properties of different-source fibrous materials by com-paring their water-binding capacity(WBC),water swelling capacity(WSC),viscosity,and in vivo effects of s... Background:This study aimed to investigate the hydration properties of different-source fibrous materials by com-paring their water-binding capacity(WBC),water swelling capacity(WSC),viscosity,and in vivo effects of selected samples on growth performance,nutrient digestibility,diarrhea,and intestinal health in weaned piglets.Methods:A total of 13 commercially available fibrous materials were first compared in chemical composition and in vitro hydration property.Subsequently,40 weaned piglets were randomized to five experimental dietary groups(8 piglets per group):control diet(a basal diet without dietary fiber,CON),basal diet supplemented with 5%microcrys-talline cellulose(MCC),5%wheat bran(WB),5%Moringa oleifera leaf powder(MOLP),or 5%sugar beet pulp(SBP),fol-lowed by analyzing their growth performance and diarrhea rate in a 28-d experiment.After the feeding experiment,anaesthetized piglets were killed,and their intestinal and colon content or plasma samples were analyzed in nutrient digestibility,intestinal morphology,intestinal barrier,short-chain fatty acids(SCFAs),and bacterial population.Results:In vitro studies showed low hydration properties for WB and MCC,while medium hydration properties for MOLP and SBP.In vivo studies indicated that compared with medium hydration property groups,low hydration prop-erty groups showed(1)exacerbated diarrhea,impaired intestinal health,and reduced apparent fecal digestibility of dry matter,gross energy,acid detergent fiber,and neutral detergent fiber;(2)decreased SCFAs concentration and rela-tive levels of Lactobacillus and Bifidobacterium,but increased levels of Escherichia coli and Brachyspira hyodysenteriae in colon contents.Additionally,SBP showed optimal performance in reducing diarrhea and increasing SCFAs produc-tion.Correlation analysis revealed a positive correlation of fiber hydration properties with in vitro SCFAs production,and diarrhea index and nutrient digestibility were negatively and positively correlated with SCFAs levels in the colon contents of weaned piglets,respectively.Conclusions:Different-source dietary fibers varied in their hydration properties and impacts on diarrhea,microbial composition and SCFAs production in weaned piglets.WB and MCC could exacerbate diarrhea and impair nutrient digestibility,probably because their low hydration properties were detrimental to gut microbial homeostasis and fermentation.Our findings provide new ideas for rational use of fiber resources in weaned piglets. 展开更多
关键词 DIARRHEA Dietary fiber Hydration property Intestinal health nutrient digestibility Weaned piglet
下载PDF
Influence of methyl donor nutrients as epigenetic regulators in colorectal cancer:A systematic review of observational studies 被引量:1
18
作者 Lourdes Pilar Chávez-Hidalgo Silvia Martín-Fernández-de-Labastida +1 位作者 Marian M de Pancorbo Marta Arroyo-Izaga 《World Journal of Gastroenterology》 SCIE CAS 2023年第7期1219-1234,共16页
BACKGROUND Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer(CRC).However,whether the influence of methyl donor intake is modified by polymorphisms in such epigenetic reg... BACKGROUND Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer(CRC).However,whether the influence of methyl donor intake is modified by polymorphisms in such epigenetic regulators is still unclear.AIM To improve the current understanding of the molecular basis of CRC.METHODS A literature search in the Medline database,Reference Citation Analysis(https://www.referencecitationanalysis.com/),and manual reference screening were performed to identify observational studies published from inception to May 2022.RESULTS A total of fourteen case-control studies and five cohort studies were identified.These studies included information on dietary methyl donors,dietary components that potentially modulate the bioavailability of methyl groups,genetic variants of methyl metabolizing enzymes,and/or markers of CpG island methylator phenotype and/or microsatellite instability,and their possible interactions on CRC risk.CONCLUSION Several studies have suggested interactions between methylenetetrahydrofolate reductase polymorphisms,methyl donor nutrients(such as folate)and alcohol on CRC risk.Moreover,vitamin B6,niacin,and alcohol may affect CRC risk through not only genetic but also epigenetic regulation.Identification of specific mechanisms in these interactions associated with CRC may assist in developing targeted prevention strategies for individuals at the highest risk of developing CRC. 展开更多
关键词 Colorectal cancer DNA methylation EPIGENETICS Methyl donors Microsatellite instability nutrientS
下载PDF
Prediction of Apple Fruit Quality by Soil Nutrient Content and Artificial Neural Network 被引量:1
19
作者 Mengyao Yan Xianqi Zeng +5 位作者 Banghui Zhang Hui Zhang Di Tan Binghua Cai Shenchun Qu Sanhong Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期193-208,共16页
The effect of soil nutrient content on fruit yield and fruit quality is very important.To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County,Jiangsu... The effect of soil nutrient content on fruit yield and fruit quality is very important.To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County,Jiangsu Province.Soil mineral elements and fruit quality were measured.The effect of soil nutrient content on fruit quality was analyzed by artificial neural network(ANN)model.The results showed that the prediction accuracy was highest(R2=0.851,0.847,0.885,0.678 and 0.746)in mass per fruit(MPF),hardness(HB),soluble solids concentrations(SSC),titratable acid concentration(TA)and solid-acid ratio(SSC/TA),respectively.The sensitivity analysis of the prediction model showed that soil available P,K,Ca and Mg contents had the greatest impact on the quality of apple fruit.Response surface method(RSM)was performed to determine the optimum range of the available P,K,Ca,and Mg contents in orchards In Feng County,which were 10∼20 mg⋅kg^(−1),170∼200 mg⋅kg^(−1),1000∼1500 mg⋅kg^(−1),and 80∼200 mg⋅kg^(−1),respectively.The research also concluded that improving the content of available P and available Ca in orchard soil was crucial to improve apple fruit quality in Feng County,Jiangsu Province. 展开更多
关键词 APPLE soil nutrients fruit quality artificial neural network sensitivity analysis response surface methodology analysis
下载PDF
Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system 被引量:1
20
作者 ZHANG Chong WANG Dan-dan +6 位作者 ZHAO Yong-jian XIAO Yu-lin CHEN Huan-xuan LIU He-pu FENG Li-yuan YU Chang-hao JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1883-1895,共13页
Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Here... Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs. 展开更多
关键词 ammonia emission crop yield 4R nutrient stewardship partial manure substitution winter wheat–summer maize cropping system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部