Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grow...Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grown in soils originating from contrasting parent materials,and soils and needles(whole,green and chlorotic portions)from 1-and 2-year-old branches and the first and second needle flush release at four sites with YNC on P.taeda were analyzed for various elements and properties.All soils had very low base levels(Ca^(2+),Mg^(2+)and K^(+))and P,suggesting a possible lack of multiple elements.YNC symptoms started at needle tips,then extended toward the needle base with time.First flush needles had longer portions with YNC than second flush needles did.Needles from the lower crown also had more symptoms along their length than those higher in the canopy.Symptoms were similar to those reported for Mg.In chlorotic portions,Mg and Ca concentrations were well below critical values;in particular,Mg levels were only one third of the critical value of 0.3 g kg^(-1).Collectively,results suggest that Mg deficiency is the primary reason for NC of P.taeda in various parent soils in Brazil.展开更多
As a consequence of the production of high-yielding cereal varieties per hectare and the considerable increase in gluten consumption, today, consequently, we face a rising epidemic of disorders related to gluten consu...As a consequence of the production of high-yielding cereal varieties per hectare and the considerable increase in gluten consumption, today, consequently, we face a rising epidemic of disorders related to gluten consumption: celiac disease, gluten allergy gluten sensitivity. Nutritional therapy is the only treatment for celiac disease unanimously accepted by the medical community. </span><b><span style="font-family:Verdana;">The aim</span></b><span style="font-family:Verdana;"> of the study is to analyze the food and nutritional security of people with disorders related to gluten consumption from the perspective of assessing the nutritional deficiencies of people diagnosed with celiac disease or gluten intolerance, but also assessing the nutritional deficiencies of gluten-free products. </span><b><span style="font-family:Verdana;">The study </span></b><span style="font-family:Verdana;">on the assessment of nutritional deficiencies of people with disorders related to gluten consumption, but also the nutritional deficiencies of gluten-free products/diets were conducted on the PubMed search engine. 154 free full text papers published in the period 2010-2020 were analyzed, according to the keywords (gluten free, diet, deficiencies). Specialists in the field are unanimous in the opinion that increasing nutritional security and ensuring sustainability can be achieved by: diversifying gluten-free products;extension of legislation to strengthen gluten-free products;developing educational strategies focused on the relationship between nutrients, food and human health;informing the population and optimizing services in order to increase the quality of life and health. However, the design of GF products, both technologically and nutritionally, especially bakery/pastry, pasta is still a challenge, and research in this area</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is current and required.展开更多
The aims of study were to evaluate growth and characterize the visual symptoms of macronutrient and micronutrient deficiencies in mangosteens. The seedlings were cultivated in nutritive solution containing all require...The aims of study were to evaluate growth and characterize the visual symptoms of macronutrient and micronutrient deficiencies in mangosteens. The seedlings were cultivated in nutritive solution containing all required macronutrient and micronutrients and in solutions with omission of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn, using the missing element technique. The experimental design was completely randomized with five replicates and twelve treatments. Symptoms of nutrient deficiency were accompanied by photographic records and described from beginning until complete definition, in which the plants were collected. Growth was evaluated through of dry mass production and nutrient contents. Nutrients omissions resulted in morphological alterations, characteristic symptoms of nutritional deficiency, promoted the reduction in dry mass production in plant, in which the Fe was most limiting, followed by N, and S. Macronutrients and micronutrients contents, without deficiencies (complete treatment) and deficient in mangosteen leaves were respectively: N (16.4 and 12.5 g kg-1);P (1.1 and 0.2 g kg-1);K (10.2 and 8.1 g kg-1);Ca (6.7 and 1.9 g kg-1);Mg (1.1 and 0.1 g kg-1);S (3.0 and 2.2 g kg-1);B (20 and 16 mg kg-1);Cu (7 and 3 mg kg-1);Fe (266 and 86 mg kg-1);Mn (58 and 17 mg kg-1). The decreasing order in appearance of visual symptoms of deficiency was N > S > K > B > Ca > P > Mg > Mn > Cu > Zn.展开更多
Orah is a hybrid of "Temple" tangor and "Dancy" tangerine, and due to its excellent performance in cultivation in Wuming of Guangxi Province for three years, it has been popularized in Guangxi, Chongqing, Sichuan ...Orah is a hybrid of "Temple" tangor and "Dancy" tangerine, and due to its excellent performance in cultivation in Wuming of Guangxi Province for three years, it has been popularized in Guangxi, Chongqing, Sichuan and Yunnan rapidly, with a planting area over 130 000 hm^2. However, there also have been some problems existing in practical production, such as leaf yellowing and canker. The causes for leaf yellowing mainly include the physiologic type and the diseases and pests type. This paper analyzed the causes and put forwards corresponding countermeasures.展开更多
Based on sequencing of part clones in a root subtractive cDNA library, an expressed sequence tag (EST) sharing high similarity to a rice C2H2 zinc finger transcription factor (ZFP15) was obtained in wheat. Through...Based on sequencing of part clones in a root subtractive cDNA library, an expressed sequence tag (EST) sharing high similarity to a rice C2H2 zinc finger transcription factor (ZFP15) was obtained in wheat. Through bioinformatics approach, the wheat C2H2-type ZFP gene referred to TaZFP15 has been identified and characterized. As a full-length cDNA of 670 bp, TaZFP15 has an open reading frame of 408 bp and encodes a 135-aa polypeptide. TaZFP15 contains two C2H2 zinc finger domains and each one has a conserved motif QALGGH. The typical L-box, generally identified in the C2H2 type transcription factors, has also been found in TaZFP15. Phylogenetic analysis suggested that TaZFP15 shares high similarities with rice ZFP15 (GenBank accession no. AY286473), maize ZFP (GenBank accession no. NM_001159094) and a subset of other zinc-finger transcription factor genes in plant species. The expression of TaZFP15 was up-regulated by starved-Pi stress, showing a pattern to be gradually elevated along with the progression of the Pi-stress in a 23-h treatment regime. Similarly, the transcripts of TaZFP15 in roots were also induced by nitrogen deficiency, and abiotic stresses of drought and salinity. No responses of TaZFP15 were detected in roots to nutrition deficiencies of P, Zn, and Ca, and the external treatment of abscisic acid (ABA). TaZFP15 could be specifically amplified in genome A, B, and D, and without variability in the sequences, suggesting that TaZFP15 has multi-copies in the homologous hexaploid species. Transgenic analysis in tobacco revealed that up-regulation of TaZFP15 could significantly improve plant dry mass accumulation via increasing the plant phosphorus acquisition capacity under Pi-deficiency condition. The results suggested that TaZFP15 is involved in mediation of signal transductions of diverse external stresses.展开更多
Chronic atrophic autoimmune gastritis (CAAG) is an organ-specific autoimmune disease characterized by an immune response, which is directed towards the parietal cells and intrinsic factor of the gastric body and fundu...Chronic atrophic autoimmune gastritis (CAAG) is an organ-specific autoimmune disease characterized by an immune response, which is directed towards the parietal cells and intrinsic factor of the gastric body and fundus and leads to hypochlorhydria, hypergastrinemia and inadequate production of the intrinsic factor. As a result, the stomach’s secretion of essential substances, such as hydrochloric acid and intrinsic factor, is reduced, leading to digestive impairments. The most common is vitamin B12 deficiency, which results in a megaloblastic anemia and iron malabsorption, leading to iron deficiency anemia. However, in the last years the deficiency of several other vitamins and micronutrients, such as vitamin C, vitamin D, folic acid and calcium, has been increasingly described in patients with CAAG. In addition the occurrence of multiple vitamin deficiencies may lead to severe hematological, neurological and skeletal manifestations in CAAG patients and highlights the importance of an integrated evaluation of these patients. Nevertheless, the nutritional deficiencies in CAAG are largely understudied. We have investigated the frequency and associated features of nutritional deficiencies in CAAG in order to focus on any deficit that may be clinically significant, but relatively easy to correct. This descriptive review updates and summarizes the literature on different nutrient deficiencies in CAAG in order to optimize the treatment and the follow-up of patients affected with CAAG.展开更多
Coeliac Disease (CD) is a permanent gluten intolerance, whose pathogenesis involves multiple factors including genetics and environment. CD has different representations and non-specific symptoms such as diarrhea, blo...Coeliac Disease (CD) is a permanent gluten intolerance, whose pathogenesis involves multiple factors including genetics and environment. CD has different representations and non-specific symptoms such as diarrhea, bloating, pain, flatulence and constipation may sometimes be misleading. Once diagnosed of CD, patients must adhere to Gluten Free Diet, which consists in the lifelong avoidance of gluten containing foods and of those naturally gluten free but at risk of contamination. This dietary approach is considered the only therapy in order to avoid symptoms exacerbation and to reduce the digestive mucosa inflammation, which has been related to higher risks of lymphoproliferative malignancy and other immunological disorders. However, being on a Gluten Free Diet is not as resolving as it may seem since it has several criticalities. First of all, excluding gluten means limiting food variety so that coeliac patients may have unbalanced intake of several nutrients and develop clinical or subclinical deficiencies. This can be due to scarce attention to qualitative and quantitative composition of diets and poor information about gluten-containing foods, which only patient-tailored dietetic protocol and long-term follow-up can achieve. Secondly, Gluten Free Diet may not result in complete remission of mucosal damage or in resolution of symptoms. Unintentional contamination of gluten or poor adherence to diet are the main culprits of the incomplete mucosal healing but other triggers may be involved. Recent research has focused on the role of FODMAPs in changing gut microbiota and on the improvement of Irritable Bowel Syndrome (IBS) symptoms after their dietary avoidance or reduction. Since CD and IBS may share many clinical presentations, further studies are needed to evaluate if a subgroup of CD patients whose symptoms are not improved by Gluten Free Diet could benefit from a new therapeutic approach consisting in both gluten/wheat and FODMAPs avoidance.展开更多
This study aimed to develop and evaluate the performance of a service system platform based on the Internet of Things(IoT)for monitoring nutritional deficiencies in plants and providing fertilizer recommendations.Ther...This study aimed to develop and evaluate the performance of a service system platform based on the Internet of Things(IoT)for monitoring nutritional deficiencies in plants and providing fertilizer recommendations.There are two distinct differences between this work and previous ones;namely,this service system platform has been developed based on IoT using a system engineering approach and its performance has been evaluated using dependability.We have successfully developed and integrated a service system platform and chlorophyll meter that is based on IoT.We have also successfully tested the performance of the service system platform using the JMeter software.The dependability value measured from the five tested variables(reliability,availability,integrity,maintainability,and safety)showed a value of 0.97 which represents a very good level of system confidence in not failing to deliver services to users under normal operational conditions.From a future perspective,this platform can be used as an alternative service to monitor nutrient deficiencies in plants and provide fertilization recommendations to increase yields,reduce fertilizer costs,and prevent the use of excessive fertilizers,which can cause environmental pollution.展开更多
Soybean(Glycine max)is a major source of plant protein and oil.Soybean breeding has benefited from advances in functional genomics.In particular,the release of soybean reference genomes has advanced our understanding ...Soybean(Glycine max)is a major source of plant protein and oil.Soybean breeding has benefited from advances in functional genomics.In particular,the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies,the molecular mechanism of symbiotic nitrogen(N)fixation,biotic and abiotic stress tolerance,and the roles of flowering time in regional adaptation,plant architecture,and seed yield and quality.Nevertheless,many challenges remain for soybean functional genomics and molecular breeding,mainly related to improving grain yield through high-density planting,maize-soybean intercropping,taking advantage of wild resources,utilization of heterosis,genomic prediction and selection breeding,and precise breeding through genome editing.This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.展开更多
基金the National council for scientific and technological development(CNPq)and Higher Education Personnel Improvement Coordination(CAPES)。
文摘Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grown in soils originating from contrasting parent materials,and soils and needles(whole,green and chlorotic portions)from 1-and 2-year-old branches and the first and second needle flush release at four sites with YNC on P.taeda were analyzed for various elements and properties.All soils had very low base levels(Ca^(2+),Mg^(2+)and K^(+))and P,suggesting a possible lack of multiple elements.YNC symptoms started at needle tips,then extended toward the needle base with time.First flush needles had longer portions with YNC than second flush needles did.Needles from the lower crown also had more symptoms along their length than those higher in the canopy.Symptoms were similar to those reported for Mg.In chlorotic portions,Mg and Ca concentrations were well below critical values;in particular,Mg levels were only one third of the critical value of 0.3 g kg^(-1).Collectively,results suggest that Mg deficiency is the primary reason for NC of P.taeda in various parent soils in Brazil.
文摘As a consequence of the production of high-yielding cereal varieties per hectare and the considerable increase in gluten consumption, today, consequently, we face a rising epidemic of disorders related to gluten consumption: celiac disease, gluten allergy gluten sensitivity. Nutritional therapy is the only treatment for celiac disease unanimously accepted by the medical community. </span><b><span style="font-family:Verdana;">The aim</span></b><span style="font-family:Verdana;"> of the study is to analyze the food and nutritional security of people with disorders related to gluten consumption from the perspective of assessing the nutritional deficiencies of people diagnosed with celiac disease or gluten intolerance, but also assessing the nutritional deficiencies of gluten-free products. </span><b><span style="font-family:Verdana;">The study </span></b><span style="font-family:Verdana;">on the assessment of nutritional deficiencies of people with disorders related to gluten consumption, but also the nutritional deficiencies of gluten-free products/diets were conducted on the PubMed search engine. 154 free full text papers published in the period 2010-2020 were analyzed, according to the keywords (gluten free, diet, deficiencies). Specialists in the field are unanimous in the opinion that increasing nutritional security and ensuring sustainability can be achieved by: diversifying gluten-free products;extension of legislation to strengthen gluten-free products;developing educational strategies focused on the relationship between nutrients, food and human health;informing the population and optimizing services in order to increase the quality of life and health. However, the design of GF products, both technologically and nutritionally, especially bakery/pastry, pasta is still a challenge, and research in this area</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is current and required.
基金National Council for Scientific and Technological Development(CNPq).
文摘The aims of study were to evaluate growth and characterize the visual symptoms of macronutrient and micronutrient deficiencies in mangosteens. The seedlings were cultivated in nutritive solution containing all required macronutrient and micronutrients and in solutions with omission of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn, using the missing element technique. The experimental design was completely randomized with five replicates and twelve treatments. Symptoms of nutrient deficiency were accompanied by photographic records and described from beginning until complete definition, in which the plants were collected. Growth was evaluated through of dry mass production and nutrient contents. Nutrients omissions resulted in morphological alterations, characteristic symptoms of nutritional deficiency, promoted the reduction in dry mass production in plant, in which the Fe was most limiting, followed by N, and S. Macronutrients and micronutrients contents, without deficiencies (complete treatment) and deficient in mangosteen leaves were respectively: N (16.4 and 12.5 g kg-1);P (1.1 and 0.2 g kg-1);K (10.2 and 8.1 g kg-1);Ca (6.7 and 1.9 g kg-1);Mg (1.1 and 0.1 g kg-1);S (3.0 and 2.2 g kg-1);B (20 and 16 mg kg-1);Cu (7 and 3 mg kg-1);Fe (266 and 86 mg kg-1);Mn (58 and 17 mg kg-1). The decreasing order in appearance of visual symptoms of deficiency was N > S > K > B > Ca > P > Mg > Mn > Cu > Zn.
基金Supported by the National Citrus Industry System(CARS-27)Key Project of science and Technology from the Agriculture Department of Guangxi Province(201504,201307)+4 种基金Scientific and Technological Development Project of Nanning City(NC20152302,20142062)Scientific and Technological Project of Wuming County(201501217)Fund of Guangxi Academy of Agricultural Sciences(NCZ2015010,GNK2015JM20,GNK2014YZ36,GNK2015YT51,GNK2016YM47)Central Financial Project of Agriculture Technology Extension in 2015Project for the Construction of Good Fruit Variety Breeding Center in Guangxi~~
文摘Orah is a hybrid of "Temple" tangor and "Dancy" tangerine, and due to its excellent performance in cultivation in Wuming of Guangxi Province for three years, it has been popularized in Guangxi, Chongqing, Sichuan and Yunnan rapidly, with a planting area over 130 000 hm^2. However, there also have been some problems existing in practical production, such as leaf yellowing and canker. The causes for leaf yellowing mainly include the physiologic type and the diseases and pests type. This paper analyzed the causes and put forwards corresponding countermeasures.
基金supported by the National Natural Science Foundation of China (30971773)the Natural Science Foundation of Hebei Province,China (C2011204031)the Key Laboratory of Crop Growth Regulation of Hebei Province,China
文摘Based on sequencing of part clones in a root subtractive cDNA library, an expressed sequence tag (EST) sharing high similarity to a rice C2H2 zinc finger transcription factor (ZFP15) was obtained in wheat. Through bioinformatics approach, the wheat C2H2-type ZFP gene referred to TaZFP15 has been identified and characterized. As a full-length cDNA of 670 bp, TaZFP15 has an open reading frame of 408 bp and encodes a 135-aa polypeptide. TaZFP15 contains two C2H2 zinc finger domains and each one has a conserved motif QALGGH. The typical L-box, generally identified in the C2H2 type transcription factors, has also been found in TaZFP15. Phylogenetic analysis suggested that TaZFP15 shares high similarities with rice ZFP15 (GenBank accession no. AY286473), maize ZFP (GenBank accession no. NM_001159094) and a subset of other zinc-finger transcription factor genes in plant species. The expression of TaZFP15 was up-regulated by starved-Pi stress, showing a pattern to be gradually elevated along with the progression of the Pi-stress in a 23-h treatment regime. Similarly, the transcripts of TaZFP15 in roots were also induced by nitrogen deficiency, and abiotic stresses of drought and salinity. No responses of TaZFP15 were detected in roots to nutrition deficiencies of P, Zn, and Ca, and the external treatment of abscisic acid (ABA). TaZFP15 could be specifically amplified in genome A, B, and D, and without variability in the sequences, suggesting that TaZFP15 has multi-copies in the homologous hexaploid species. Transgenic analysis in tobacco revealed that up-regulation of TaZFP15 could significantly improve plant dry mass accumulation via increasing the plant phosphorus acquisition capacity under Pi-deficiency condition. The results suggested that TaZFP15 is involved in mediation of signal transductions of diverse external stresses.
文摘Chronic atrophic autoimmune gastritis (CAAG) is an organ-specific autoimmune disease characterized by an immune response, which is directed towards the parietal cells and intrinsic factor of the gastric body and fundus and leads to hypochlorhydria, hypergastrinemia and inadequate production of the intrinsic factor. As a result, the stomach’s secretion of essential substances, such as hydrochloric acid and intrinsic factor, is reduced, leading to digestive impairments. The most common is vitamin B12 deficiency, which results in a megaloblastic anemia and iron malabsorption, leading to iron deficiency anemia. However, in the last years the deficiency of several other vitamins and micronutrients, such as vitamin C, vitamin D, folic acid and calcium, has been increasingly described in patients with CAAG. In addition the occurrence of multiple vitamin deficiencies may lead to severe hematological, neurological and skeletal manifestations in CAAG patients and highlights the importance of an integrated evaluation of these patients. Nevertheless, the nutritional deficiencies in CAAG are largely understudied. We have investigated the frequency and associated features of nutritional deficiencies in CAAG in order to focus on any deficit that may be clinically significant, but relatively easy to correct. This descriptive review updates and summarizes the literature on different nutrient deficiencies in CAAG in order to optimize the treatment and the follow-up of patients affected with CAAG.
文摘Coeliac Disease (CD) is a permanent gluten intolerance, whose pathogenesis involves multiple factors including genetics and environment. CD has different representations and non-specific symptoms such as diarrhea, bloating, pain, flatulence and constipation may sometimes be misleading. Once diagnosed of CD, patients must adhere to Gluten Free Diet, which consists in the lifelong avoidance of gluten containing foods and of those naturally gluten free but at risk of contamination. This dietary approach is considered the only therapy in order to avoid symptoms exacerbation and to reduce the digestive mucosa inflammation, which has been related to higher risks of lymphoproliferative malignancy and other immunological disorders. However, being on a Gluten Free Diet is not as resolving as it may seem since it has several criticalities. First of all, excluding gluten means limiting food variety so that coeliac patients may have unbalanced intake of several nutrients and develop clinical or subclinical deficiencies. This can be due to scarce attention to qualitative and quantitative composition of diets and poor information about gluten-containing foods, which only patient-tailored dietetic protocol and long-term follow-up can achieve. Secondly, Gluten Free Diet may not result in complete remission of mucosal damage or in resolution of symptoms. Unintentional contamination of gluten or poor adherence to diet are the main culprits of the incomplete mucosal healing but other triggers may be involved. Recent research has focused on the role of FODMAPs in changing gut microbiota and on the improvement of Irritable Bowel Syndrome (IBS) symptoms after their dietary avoidance or reduction. Since CD and IBS may share many clinical presentations, further studies are needed to evaluate if a subgroup of CD patients whose symptoms are not improved by Gluten Free Diet could benefit from a new therapeutic approach consisting in both gluten/wheat and FODMAPs avoidance.
文摘This study aimed to develop and evaluate the performance of a service system platform based on the Internet of Things(IoT)for monitoring nutritional deficiencies in plants and providing fertilizer recommendations.There are two distinct differences between this work and previous ones;namely,this service system platform has been developed based on IoT using a system engineering approach and its performance has been evaluated using dependability.We have successfully developed and integrated a service system platform and chlorophyll meter that is based on IoT.We have also successfully tested the performance of the service system platform using the JMeter software.The dependability value measured from the five tested variables(reliability,availability,integrity,maintainability,and safety)showed a value of 0.97 which represents a very good level of system confidence in not failing to deliver services to users under normal operational conditions.From a future perspective,this platform can be used as an alternative service to monitor nutrient deficiencies in plants and provide fertilization recommendations to increase yields,reduce fertilizer costs,and prevent the use of excessive fertilizers,which can cause environmental pollution.
基金supported by the National Natural Science Foundation of China(32090064 and 31725021 to F.K.,31930083 to B.L.)the Major Program of Guangdong Basic and Applied Research(2019B030302006 to F.K.and B.L.)funded by the National Key Research and Development Program(2021YFF1001203 to B.L.)。
文摘Soybean(Glycine max)is a major source of plant protein and oil.Soybean breeding has benefited from advances in functional genomics.In particular,the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies,the molecular mechanism of symbiotic nitrogen(N)fixation,biotic and abiotic stress tolerance,and the roles of flowering time in regional adaptation,plant architecture,and seed yield and quality.Nevertheless,many challenges remain for soybean functional genomics and molecular breeding,mainly related to improving grain yield through high-density planting,maize-soybean intercropping,taking advantage of wild resources,utilization of heterosis,genomic prediction and selection breeding,and precise breeding through genome editing.This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.