In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thi...In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites.展开更多
A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylo...A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon.展开更多
Attapulgite fibers were modified by polyurethane, forming polyurethane grafted attapulgite (AT-PU), which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoe...Attapulgite fibers were modified by polyurethane, forming polyurethane grafted attapulgite (AT-PU), which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Nylon 6/AT-PU nanocomposites of different modified attapulgite loadings were prepared by melt blending in a twin screw extruder. Scanning electron microscopy (SEM) observation on the fracture surfaces of the nanocomposites showed not only a uniform dispersion of AT-PU but also a strong interfacial adhesion with the matrix. Differential scanning calorimeter (DSC) and Thermogravimetric analyzer (TGA) were used to illustrate the infiuence of AT-PU particles on the thermal properties of the nylon 6/AT-PU nanocomposites. The results indicated that the addition of attapulgite probably induced the heterogeneous nucleation and was favorable for the formation of γ -crystalline form, and that the higher thermal stability was obtained for the composites.展开更多
Nylon 1212/organic montmorillonite(OMMT)nanocomposites were prepared using the melt compounding method.The morphology and dynamical mechanical properties of the nanocomposites were investigated using transmission elec...Nylon 1212/organic montmorillonite(OMMT)nanocomposites were prepared using the melt compounding method.The morphology and dynamical mechanical properties of the nanocomposites were investigated using transmission electron microscope(TEM)and dynamic mechanical analysis(DMA).The storage modulus of nylon 1212/OMMT nanocomposites was increased with increasing OMMT.The flame retardant properties were characterized by cone calorimetry,scanning electron microscope(SEM)and X-ray photoelectron spectroscopy(XPS).The flame retardant properties were characterized using cone calorimetry,whereby nylon 1212/OMMT nanocomposites were improved compared with pure nylon 1212 because of the carbonaceous-silicate granular materials which were formed during combustion,thus proposing the flame retardant mechanism.展开更多
Synergistic effect in network formation of nylon-6 (PA6) nanocomposites containing one dimensional (ID) multi-walled carbon nanotubes (CNTs) and two dimensional (2D) layered double hydroxide (LDH) platelets ...Synergistic effect in network formation of nylon-6 (PA6) nanocomposites containing one dimensional (ID) multi-walled carbon nanotubes (CNTs) and two dimensional (2D) layered double hydroxide (LDH) platelets on improving the mechanical properties has been studied. Mechanical tests show that, with incorporation of 1 wt% LDHs and 0.5 wt% CNTs, the tensile modulus, the yield strength as well as the hardness of the ternary composite are greatly improved by about 230%, 128% and 110% respectively, as compared with neat PA6. This is mainly attributed to the unique, strong interactions between the CNTs and the LDHs as well as the jammed network-like structure thus formed between the nanofillers, as confirmed by the morphological observations. As compared with the binary nanocomposites, a much enhanced solid-like behavior in the terminal region of the rheological curves can clearly be observed for the ternary system, which also indicates the formation of a percolating filler network.展开更多
文摘In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites.
文摘A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon.
基金Funded by the Natural Science Fundation of China and China Academy of Engineering Physics (10776014)the Science and Technology Supporting Item of Jiangsu Province,China(BE2009159)
文摘Attapulgite fibers were modified by polyurethane, forming polyurethane grafted attapulgite (AT-PU), which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Nylon 6/AT-PU nanocomposites of different modified attapulgite loadings were prepared by melt blending in a twin screw extruder. Scanning electron microscopy (SEM) observation on the fracture surfaces of the nanocomposites showed not only a uniform dispersion of AT-PU but also a strong interfacial adhesion with the matrix. Differential scanning calorimeter (DSC) and Thermogravimetric analyzer (TGA) were used to illustrate the infiuence of AT-PU particles on the thermal properties of the nylon 6/AT-PU nanocomposites. The results indicated that the addition of attapulgite probably induced the heterogeneous nucleation and was favorable for the formation of γ -crystalline form, and that the higher thermal stability was obtained for the composites.
基金supported by the Guizhou Provincial Science and Technology Project(Qian Ke He Zhi Cheng[2019]2849,[2019]2028)Guiyang Baiyun District Science and Technology Plan Project Grant no.[2018]5J.
文摘Nylon 1212/organic montmorillonite(OMMT)nanocomposites were prepared using the melt compounding method.The morphology and dynamical mechanical properties of the nanocomposites were investigated using transmission electron microscope(TEM)and dynamic mechanical analysis(DMA).The storage modulus of nylon 1212/OMMT nanocomposites was increased with increasing OMMT.The flame retardant properties were characterized by cone calorimetry,scanning electron microscope(SEM)and X-ray photoelectron spectroscopy(XPS).The flame retardant properties were characterized using cone calorimetry,whereby nylon 1212/OMMT nanocomposites were improved compared with pure nylon 1212 because of the carbonaceous-silicate granular materials which were formed during combustion,thus proposing the flame retardant mechanism.
基金financially supported by the National Natural Science Foundation of China(No.51125011)Guangxi Small Highland Innovation Team of Talents in Colleges and Universities,Guangxi Funds for Specially-appointed ExpertsGuangxi Natural Science Foundation of China(No.2014GXNSFAA118321)
文摘Synergistic effect in network formation of nylon-6 (PA6) nanocomposites containing one dimensional (ID) multi-walled carbon nanotubes (CNTs) and two dimensional (2D) layered double hydroxide (LDH) platelets on improving the mechanical properties has been studied. Mechanical tests show that, with incorporation of 1 wt% LDHs and 0.5 wt% CNTs, the tensile modulus, the yield strength as well as the hardness of the ternary composite are greatly improved by about 230%, 128% and 110% respectively, as compared with neat PA6. This is mainly attributed to the unique, strong interactions between the CNTs and the LDHs as well as the jammed network-like structure thus formed between the nanofillers, as confirmed by the morphological observations. As compared with the binary nanocomposites, a much enhanced solid-like behavior in the terminal region of the rheological curves can clearly be observed for the ternary system, which also indicates the formation of a percolating filler network.