To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behavio...To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behaviors of composites under dry condition, water lubrication and oil lubrication were investigated through a ring-black wear tester. Worn surfaces were analyzed using a scanning electron microscope. The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing. Compared to MC nylon, the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%, of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%. The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear. The wom surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites. Compared with dry friction, the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions. The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.展开更多
Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study ...Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.展开更多
In this research study,the mechanical properties of several Polymer matrix composites are investigated.These composites are multi-phase materials in which reinforcing materials are properly mixed with a polymer matrix...In this research study,the mechanical properties of several Polymer matrix composites are investigated.These composites are multi-phase materials in which reinforcing materials are properly mixed with a polymer matrix.More precisely,Nylon 6 reinforced with 5,15 and 25 wt.%of silicon carbide(SiC)and Nylon 6 reinforced with 5,15 and 25 wt.%of boron carbide(B_(4)C),prepared by means of an injection moulding process at three different injection pressures are considered.Specific attention is paid to the tensile and impact strength of these composites.The Taguchi technique is used to optimize the process parameters such as reinforcement material,its percentage and the injection pressure.It is observed that the specimens 5%SiC with 80 MPa injection pressure display a better tensile strength and similarly the specimen 5%B_(4)C with 90 MPa injection pressure have a superior impact strength.展开更多
Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic ac...Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic acid leading to carboxy terminated N6, and the second one is polycondensation of the latter product with PEO in the presence of catalyst and thermostabilizer to form a high molecular weight multi-block copolymer. Several methods were applied to characterize the synthesized copolyrner such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. The obtained results confirmed the multi-block structure for copolymer with a very high degree of micro-phase separation. Atomic force microscopy micrographs indicated that the morphology was the dispersion of high stiffness nanostructured polyamide (PA) domains in the amorphous region of PEO matrix, which can be very important in their performance for membrane processes.展开更多
In this article, a new method for simultaneous determination of six phthalate esters was developed by a combination of electrospun nylon6 nanofibers mat-based solid phase extraction with high performance liquid chroma...In this article, a new method for simultaneous determination of six phthalate esters was developed by a combination of electrospun nylon6 nanofibers mat-based solid phase extraction with high performance liquid chromatography-ultraviolet detector (HPLC-UV). The six phthalate esters were dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP). Under optimized conditions, all target analytes in 50 mL environmental water samples could be completely extracted by 2.5 mg nylon6 nanofibers mat and eluted by 100 μL solvent. Compared with C18 cartridges solid phase extraction, C 18 disks solid phase extraction and national standard method (China), nylon6 nanofibers mat-based solid phase extraction was advantageous in aspects of simple and fast operation, low consumption of extraction materials and organic solvents. The four methods were applied to analysis of environment water samples. All the results indicated that the determination values of target compounds with the proposed method were consistent with C18 cartridges and C18 disks solid phase extraction method, and the new method was better than the national standard method in aspects of recovery, LOD and precision. Therefore, nylon6 nanofibers mat has great potential as a novel material for solid phase extraction.展开更多
Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred ...Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.展开更多
The composites of rigid rod poly(phenylene terphthalamide) (PPTA) and flexible nylon 6 were prepared by using an in situ polymerization.The anion of PPTA was used as the initiator for the anionic polymerization of cap...The composites of rigid rod poly(phenylene terphthalamide) (PPTA) and flexible nylon 6 were prepared by using an in situ polymerization.The anion of PPTA was used as the initiator for the anionic polymerization of caprolactam of form the nylon 6 matrix.SEM photographs showed that PPTA was dispersed in the matrix in a form of microfibril with a diameter of 50~100nm.The microfibril serves as the reinforcing agent in nylon matrix and leads to a nearly two fold increase in modulus,64% increase in tensile strength and a significant reduction in strain to break.The DMTA results also showed that the mechanical properties of PPTA/nylon 6 composites were greatly improved.展开更多
基金Funded by the National High-Tech Projects('863' Program) (No.2002AA2Z4141)
文摘To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behaviors of composites under dry condition, water lubrication and oil lubrication were investigated through a ring-black wear tester. Worn surfaces were analyzed using a scanning electron microscope. The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing. Compared to MC nylon, the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%, of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%. The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear. The wom surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites. Compared with dry friction, the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions. The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.
基金PTU Jalandhar,Manufacturing Research Lab GNDEC,Ludhiana and DST GOI for financial support
文摘Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.
文摘In this research study,the mechanical properties of several Polymer matrix composites are investigated.These composites are multi-phase materials in which reinforcing materials are properly mixed with a polymer matrix.More precisely,Nylon 6 reinforced with 5,15 and 25 wt.%of silicon carbide(SiC)and Nylon 6 reinforced with 5,15 and 25 wt.%of boron carbide(B_(4)C),prepared by means of an injection moulding process at three different injection pressures are considered.Specific attention is paid to the tensile and impact strength of these composites.The Taguchi technique is used to optimize the process parameters such as reinforcement material,its percentage and the injection pressure.It is observed that the specimens 5%SiC with 80 MPa injection pressure display a better tensile strength and similarly the specimen 5%B_(4)C with 90 MPa injection pressure have a superior impact strength.
文摘Segmented block copolymer based on nylon6 (N6) and polyethylene oxide (PEO) with stochiometric ratio was synthesized via a two-step process. The first step represents end capping of N6 in the presence of adipic acid leading to carboxy terminated N6, and the second one is polycondensation of the latter product with PEO in the presence of catalyst and thermostabilizer to form a high molecular weight multi-block copolymer. Several methods were applied to characterize the synthesized copolyrner such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and atomic force microscopy. The obtained results confirmed the multi-block structure for copolymer with a very high degree of micro-phase separation. Atomic force microscopy micrographs indicated that the morphology was the dispersion of high stiffness nanostructured polyamide (PA) domains in the amorphous region of PEO matrix, which can be very important in their performance for membrane processes.
基金Project supported by the National Natural Science Foundation of China (No. 9225000007), Southeast University and the Suzhou Science and Technology Development Projects (No. YJS0948).
文摘In this article, a new method for simultaneous determination of six phthalate esters was developed by a combination of electrospun nylon6 nanofibers mat-based solid phase extraction with high performance liquid chromatography-ultraviolet detector (HPLC-UV). The six phthalate esters were dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP). Under optimized conditions, all target analytes in 50 mL environmental water samples could be completely extracted by 2.5 mg nylon6 nanofibers mat and eluted by 100 μL solvent. Compared with C18 cartridges solid phase extraction, C 18 disks solid phase extraction and national standard method (China), nylon6 nanofibers mat-based solid phase extraction was advantageous in aspects of simple and fast operation, low consumption of extraction materials and organic solvents. The four methods were applied to analysis of environment water samples. All the results indicated that the determination values of target compounds with the proposed method were consistent with C18 cartridges and C18 disks solid phase extraction method, and the new method was better than the national standard method in aspects of recovery, LOD and precision. Therefore, nylon6 nanofibers mat has great potential as a novel material for solid phase extraction.
文摘Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.
文摘The composites of rigid rod poly(phenylene terphthalamide) (PPTA) and flexible nylon 6 were prepared by using an in situ polymerization.The anion of PPTA was used as the initiator for the anionic polymerization of caprolactam of form the nylon 6 matrix.SEM photographs showed that PPTA was dispersed in the matrix in a form of microfibril with a diameter of 50~100nm.The microfibril serves as the reinforcing agent in nylon matrix and leads to a nearly two fold increase in modulus,64% increase in tensile strength and a significant reduction in strain to break.The DMTA results also showed that the mechanical properties of PPTA/nylon 6 composites were greatly improved.