期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Asymmetric N,O-Coordinated Single Atomic Co Sites for Stable Lithium Metal Anodes
1
作者 Yifan Li Daliang Fang +8 位作者 Xue Liang Li Dong Yan Shibo Xi Tian Chen Li Congjian Lin Shaozhuan Huang Jianbei Qiu Xuhui Xu Hui Ying Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期425-431,共7页
Lithium metal has been considered one of the most promising anodes for next-generation rechargeable batteries,but its practical application is largely hindered by the uncontrollable dendrite growth and infinite volume... Lithium metal has been considered one of the most promising anodes for next-generation rechargeable batteries,but its practical application is largely hindered by the uncontrollable dendrite growth and infinite volume change.Here,inspired by superior catalytic effects of single-atom catalysts,carbon-supported single atomic Co with asymmetric N,O-coordination(Co-N/O)is developed for Li metal battery.Experimental results and theoretical calculations indicate that single atomic Co atoms with asymmetric N,O-coordination present enhanced binding ability toward Li in comparison with N-coordinated atomic Co site and isolated O site,enabling uniform Li plating/stripping.Moreover,the asymmetric N,O-coordination around Co atoms induces co-activation effects,lowering the energy barriers toward Li^(+)to Li^(0)conversion and largely promoting the deposition kinetics.When used as a Li deposition host,the Co-N/O achieves a high average coulombic efficiency of 98.6%at a current density of 1 mA cm^(-2)and a capacity of 2 mAh cm^(-2),long cycling life of 2000 h in symmetrical cells,and excellent rate performance(voltage hysteresis of 23 mV at 8 mA cm^(-2)).This work provides a comprehensive understanding of single atomic metals with asymmetric heteroatom coordination in the design of Li metal anode. 展开更多
关键词 asymmetric atomic structure lithiophilicity lithium metal anode N o-coordination single atomic Co
下载PDF
Pressure gradient errors in a covariant method of implementing theσ-coordinate:idealized experiments and geometric analysis 被引量:1
2
作者 LI Jin-Xi LI Yi-Yuan WANG Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第4期270-276,共7页
A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and t... A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next, the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal a-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain. 展开更多
关键词 Pressure gradient forceerrors covariant scalarequations of the o-coordinate steep terrain computational andphysical space geometricanalysis non-orthogonala-coordinate
下载PDF
б-sharpen immersed boundary method(б-SIBM)—New method for solving the horizontal pressure-gradient force(PGF) problem of б-coordinate 被引量:1
3
作者 HEI PengFei ZHOU Gang +2 位作者 JIA DongDong YE YunTao LEI Kun 《Science China Earth Sciences》 SCIE EI CAS 2014年第7期1681-1691,共11页
Although G-coordinate is one of the most popular methods used in marine and estuarine modeling, it has long suffered from the so-called "steep boundary problem", namely, the PGF problem. In this paper, a new method ... Although G-coordinate is one of the most popular methods used in marine and estuarine modeling, it has long suffered from the so-called "steep boundary problem", namely, the PGF problem. In this paper, a new method called the "σ-sharpen immersed boundary method" (σ-SIBM) is put forward. In this method, the virtual flat bottom boundary is creatively introduced in regions with the steep boundary and is taken as the boundary of numerical domain. By this, OH/Ox of numerical domain changes to be a controllable value and the steep bottom problem is then transformed to the non-conforming boundary problem, which is, in turn, solved by the SIBM. The accuracy and efficiency of the σ-sharpen immersed boundary method (σ-SIBM) has been showed by both comparative theoretical analysis and classical numerical tests. First, it is shown that the σ-SIBM is more effective than the z-level method, in that σ-SIBM needs special treatment only in the steep section, but the z-level method needs the special treatment in each grid note. Second, it is superior to the p-method in that it is not restricted by the density distribution. This paper revisits the classical seamount numerical test used in numerous studies to prove the sigma errors of the pressure gradient force (PGFE) and their long-term effects on circulation. It can be seen that, as for the maximum erroneous velocity and kinetic energy, the value of σ-SIBM is much less than that of the z-level method and the traditional σ-method. 展开更多
关键词 sharpen immersed boundary method (SIBM) immersed boundary method (IBM) direct forcing method o-coordinate pressure gradient force (PGF)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部