期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于二重LOF与逆交叉验证的稳健AdaBoost回归模型
1
作者 曾凡倍 杨联强 《数据与计算发展前沿(中英文)》 CSCD 2024年第5期126-138,共13页
【目的】传统AdaBoost回归模型的稳健性不足,改进的AdaBoost.RT+、AdaBoost.RS算法仍然存在对异常数据抑制效果不显著和识别正确率较低等问题,增强AdaBoost方法的稳健性具有重要的实际应用价值。【方法】给出的AdaBoost.R_LOF模型,首先... 【目的】传统AdaBoost回归模型的稳健性不足,改进的AdaBoost.RT+、AdaBoost.RS算法仍然存在对异常数据抑制效果不显著和识别正确率较低等问题,增强AdaBoost方法的稳健性具有重要的实际应用价值。【方法】给出的AdaBoost.R_LOF模型,首先提出二重LOF和逆交叉验证算法,并将两种方法结合,以概率刻画数据的异常程度。然后在AdaBoost.R2算法的基础上,根据数据的异常程度,对数据设置恰当的权重系数,在不影响正常数据迭代的同时抑制异常数据的影响。【结果】使得新模型具有更好的稳健性,并且得到更小的预测均方误差。【局限】该方法需要调节的超参数有所增加,需要根据数据集分布特征进行调整。【结论】模拟和真实案例结果显示,相比于AdaBoost.R2、AdaBoost.RT+和AdaBoost.RS算法,在不同比例异常值的数据集下,该方法都具有更好的稳健性和估计效果。 展开更多
关键词 ADABOOST算法 二重LOF算法 逆交叉验证 AdaBoost.R_LOF算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部