Four oat β-glucan enriched hydrocolloids (Nutrim10, C-Trim20, C-Trim30, C-Trim50), oat bran concentrate (OBC), and β-Glucan95 were investigated for antioxidant and pasting properties. C-Trim30 had the highest solubl...Four oat β-glucan enriched hydrocolloids (Nutrim10, C-Trim20, C-Trim30, C-Trim50), oat bran concentrate (OBC), and β-Glucan95 were investigated for antioxidant and pasting properties. C-Trim30 had the highest soluble phenolic content, followed by C-Trim20. The trend of antioxidant activity was similar with that of phenolic contents. The phenolic content of the extracts increased with increasing temperatures. The highest content of soluble phenolic compounds was found at temperatures up to 100℃ for most samples regardless of solvent. Water extracts had significantly higher phenolic contents than extracts from 50% ethanol at 100℃ for all samples with the exception of C-Trim30. However, the effect of temperature and solvent concentrations was not as apparent for antioxidant activity as that observed for phenolic content. In general, the differences in three different solvents were not as apparent. Significantly higher water holding capacities were found for C-Trim30 and C-Trim50 than the other samples while β-Glucan 95 had substantially the highest paste viscosity followed by C-Trim50 and C-Trim30.展开更多
Teff-oat composites were developed using gluten free teff flour containing essential amino acids and minerals along with oat products containing β-glucan known for lowering blood cholesterol. Teff-oat composites were...Teff-oat composites were developed using gluten free teff flour containing essential amino acids and minerals along with oat products containing β-glucan known for lowering blood cholesterol. Teff-oat composites were evaluated for their pasting and rheological properties by a Rapid Visco Analyzer (RVA) and an advanced rheometer. All teff-oat composites showed increased water holding and pasting viscosities with increasing oat contents compared to wheat flour. However, they were only significantly influenced by 80% oat products in teff-oat composites compared with teff flour alone. OBC (oat bran concentrate) had the highest elastic modulus G’ among the starting materials. The elastic modulus G’ for teff-Nutrim (oat bran hydrocolloid) composites were decreased with increasing Nutrim contents in composites. In contrast, the increasing content of OBC in composites significantly raised both G’ and G”. The elastic modulus G’ and viscous modulus G” for all teff-OBC composites were higher than teff and wheat flour. All WOF composites showed similar rheological properties. All composites had shear thinning properties that are important to mouthfeel and industrial applications. These teff-oat composites were developed using feasible procedures. They have improved nutritional value and texture qualities for functional food applications.展开更多
文摘Four oat β-glucan enriched hydrocolloids (Nutrim10, C-Trim20, C-Trim30, C-Trim50), oat bran concentrate (OBC), and β-Glucan95 were investigated for antioxidant and pasting properties. C-Trim30 had the highest soluble phenolic content, followed by C-Trim20. The trend of antioxidant activity was similar with that of phenolic contents. The phenolic content of the extracts increased with increasing temperatures. The highest content of soluble phenolic compounds was found at temperatures up to 100℃ for most samples regardless of solvent. Water extracts had significantly higher phenolic contents than extracts from 50% ethanol at 100℃ for all samples with the exception of C-Trim30. However, the effect of temperature and solvent concentrations was not as apparent for antioxidant activity as that observed for phenolic content. In general, the differences in three different solvents were not as apparent. Significantly higher water holding capacities were found for C-Trim30 and C-Trim50 than the other samples while β-Glucan 95 had substantially the highest paste viscosity followed by C-Trim50 and C-Trim30.
文摘Teff-oat composites were developed using gluten free teff flour containing essential amino acids and minerals along with oat products containing β-glucan known for lowering blood cholesterol. Teff-oat composites were evaluated for their pasting and rheological properties by a Rapid Visco Analyzer (RVA) and an advanced rheometer. All teff-oat composites showed increased water holding and pasting viscosities with increasing oat contents compared to wheat flour. However, they were only significantly influenced by 80% oat products in teff-oat composites compared with teff flour alone. OBC (oat bran concentrate) had the highest elastic modulus G’ among the starting materials. The elastic modulus G’ for teff-Nutrim (oat bran hydrocolloid) composites were decreased with increasing Nutrim contents in composites. In contrast, the increasing content of OBC in composites significantly raised both G’ and G”. The elastic modulus G’ and viscous modulus G” for all teff-OBC composites were higher than teff and wheat flour. All WOF composites showed similar rheological properties. All composites had shear thinning properties that are important to mouthfeel and industrial applications. These teff-oat composites were developed using feasible procedures. They have improved nutritional value and texture qualities for functional food applications.