In this study, the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil in three cropping systems and at two oat growth stages were investigated using real-time PCR and Illumina MiS...In this study, the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil in three cropping systems and at two oat growth stages were investigated using real-time PCR and Illumina MiSeq sequencing. The nifH gene abundance in oat-soybean intercropping (OSO) and oat-mungbean intercropping (OMO) was significantly greater than that in sole oat (O), but the nifH gene abundance significantly decreased at the later stage in all the treatments. Alpha diversity indices in OSO and OMO were higher at the heading stage, but lower at the maturity stage than that in O. Bradyrhizobium and Skermanella were the dominant genera identified in all samples, with an average proportion of 35.8% and 12.4%, respectively. The proportion of dominant genera showed significant differences and varied with cropping system and growth stage. Principal component analysis showed that growth stage had a stronger effect than intercropping on the diazotrophic community structure. However, Mantel test and redundancy analysis showed there was no environmental factor significantly correlated to the diazotrophic community structure. Our results demonstrate that intercropping had a weaker effect than growth stage on the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil.展开更多
基金funded by the China Agriculture Research System Project(CARS-08-B-1)the National Key Research and Development Program of China(2016YFD0300205-01)
文摘In this study, the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil in three cropping systems and at two oat growth stages were investigated using real-time PCR and Illumina MiSeq sequencing. The nifH gene abundance in oat-soybean intercropping (OSO) and oat-mungbean intercropping (OMO) was significantly greater than that in sole oat (O), but the nifH gene abundance significantly decreased at the later stage in all the treatments. Alpha diversity indices in OSO and OMO were higher at the heading stage, but lower at the maturity stage than that in O. Bradyrhizobium and Skermanella were the dominant genera identified in all samples, with an average proportion of 35.8% and 12.4%, respectively. The proportion of dominant genera showed significant differences and varied with cropping system and growth stage. Principal component analysis showed that growth stage had a stronger effect than intercropping on the diazotrophic community structure. However, Mantel test and redundancy analysis showed there was no environmental factor significantly correlated to the diazotrophic community structure. Our results demonstrate that intercropping had a weaker effect than growth stage on the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil.