Obesity is associated with numerous metabolic disorders,and dietary polyphenols have been confirmed to have beneficial effects on the metabolism in obesity.However,the effect of 3-(3’,4’-dihydroxyphenyl)propanoic ac...Obesity is associated with numerous metabolic disorders,and dietary polyphenols have been confirmed to have beneficial effects on the metabolism in obesity.However,the effect of 3-(3’,4’-dihydroxyphenyl)propanoic acid(DHPA)and 3’,4’-dihydroxyphenylacetic acid(DHAA),two main metabolites of dietary polyphenols,on obesity remains poorly understood.In this study,DHPA and DHAA were found to alleviate obesity,as well as regulate insulin resistance,lipid metabolism,and oxidative stress response in high-fat diet(HFD)mice.Surprisingly,the 16S rRNA sequencing and UHPLC-Q-TOF/MS demonstrated that DHPA and DHAA only slightly disturbed the intestinal microbiome,but significantly altered the urine metabolome of HFD mice mainly by regulating pentose and glucuronate interconversion,tyrosine metabolism,pentose phosphate and tricarboxylic acid(TCA)cycle as indicated by metabolic pathway analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG)database.Correlation analysis revealed that the differential metabolites are strongly associated with body weight,blood glucose,insulin level,and superoxide dismutase(SOD)enzyme activity.Our results revealed that DHPA and DHAA exert their anti-obesity effect by regulating important metabolites in the glucose,lipid and tyrosine metabolism pathways.展开更多
Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis s...Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis suffer from severe local and systemic complications and organ failure, leading to a poor prognosis. The early recognition of the severe condition is important to improve prognosis. Obesity has risen in tandem with an increase in the severity of acute pancreatitis in recent years. Studies have revealed that adipose tissue, particularly visceral adipose tissue is associated with the prognosis of acute pancreatitis. This review discussed the role of visceral adipose tissue in obese patients with acute pancreatitis and explored the possible mechanism involved.展开更多
BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevent...BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.展开更多
In the retrospective study by Luo et al regarding clinical outcomes in gestational diabetes mellitus(GDM),the results are statistically significant in favour of the benefits of individualized nutrition interventions e...In the retrospective study by Luo et al regarding clinical outcomes in gestational diabetes mellitus(GDM),the results are statistically significant in favour of the benefits of individualized nutrition interventions enumerated therein.The study has provided important evidence to improve maternal and child health in the Asian population.The methods,however,appear to have considerable limi-tations,wherein the time point of diagnosis of GDM,severity of GDM,selection bias,compliance to therapy,important maternal covariates,observable microvascular abnormalities and the confounding effect of added insulin have not been considered.We have provided suggestions to improve the external validity of the study,including the use of Equator Network reporting guidelines and inclusion of overweight and obese patients in future studies.展开更多
The prevalence of metabolic-associated fatty liver disease(MAFLD)has increased substantially in recent years because of the global obesity pandemic.MAFLD,now recognized as the number one cause of chronic liver disease...The prevalence of metabolic-associated fatty liver disease(MAFLD)has increased substantially in recent years because of the global obesity pandemic.MAFLD,now recognized as the number one cause of chronic liver disease in the world,not only increases liver-related morbidity and mortality among sufferers but also worsens the complications associated with other comorbid conditions such as cardiovascular disease,type 2 diabetes mellitus,obstructive sleep apnoea,lipid disorders and sarcopenia.Understanding the interplay between MAFLD and these comorbidities is important to design optimal therapeutic strategies.Sarcopenia can be either part of the disease process that results in MAFLD(e.g.,obesity or adiposity)or a consequence of MAFLD,especially in the advanced stages such as fibrosis and cirrhosis.Sarcopenia can also worsen MAFLD by reducing exercise capacity and by the production of various muscle-related chemical factors.Therefore,it is crucial to thoroughly understand how we deal with these diseases,especially when they coexist.We explore the pathobiological interlinks between MAFLD and sarcopenia in this comprehensive clinical update review article and propose evidence-based therapeutic strategies to enhance patient care.展开更多
Nowadays,roughly 603.7 million people are bothered by obesity[1].More seriously,obesity brings inflammation to the peripheral and central nervous system,which compromises the comorbidity of obesity,major depression[2]...Nowadays,roughly 603.7 million people are bothered by obesity[1].More seriously,obesity brings inflammation to the peripheral and central nervous system,which compromises the comorbidity of obesity,major depression[2],and cognitive deficits[3].Drug competent in the comorbidity is still lacking.In 2015,Liu et al.[4]reported celastrol(CEL)as a powerful anti-obesity agent.In our previous study.展开更多
Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,in...Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,including improving glucose and lipid metabolism,enhancing insulin sensitivity,reducing oxidative stress and inflammation,promoting ceramides degradation,and stimulating adipose tissue vascularity.Based on those,it can serve as a positive regulator in many metabolic syndromes,such as type 2 diabetes(T2D),cardiovascular diseases,non-alcoholic fatty liver disease(NAFLD),sarcopenia,neurodegenerative diseases,and certain cancers.Therefore,a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors.The modulation of ADP genes,multimerization,and secretion covers the main processes of ADP generation,providing a comprehensive orientation for the development of more appropriate therapeutic strategies.In order to have a deeper understanding of ADP,this paper will provide an all-encompassing review of ADP.展开更多
Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a“disease”.Brown adipose tissue(BAT)thermogenesis and white adipose tissue(WAT)browning emerge as a potential strateg...Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a“disease”.Brown adipose tissue(BAT)thermogenesis and white adipose tissue(WAT)browning emerge as a potential strategy of anti-obesity by dissipating energy as heat.However,drugs based on adipose tissue thermogenesis have not been successfully approved yet.In current study,we found that black tea extract(BTE)obtained by patentauthorized manufacturing process prevented body weight gain as novel thermogenic activator with reduction of adiposity,improvement of adipose distribution,and glucose metabolism improvement in diet-induced obesity mice.Mechanismly,anti-obesity effect of BTE depends on promoting BAT thermogenesis and WAT browning with upregulation of uncoupling protein 1(UCP1),especially visceral adipose tissue(VAT)with browning resistance.Specifically,utilizing in silico approach of network pharmacology and molecular docking,we identified carbonic anhydrase 2(CA2)in nitrogen metabolism as anti-obesity target of BTE and further elucidated that protein kinase B(AKT)signaling pathway linked CA2 and UCP1.Meanwhile gut microbiota regulation may prompt the CA2-dependent thermogenesis activation.Our findings demonstrated anti-obesity effect of BTE as thermogenic activator through CA2-mediated BAT thermogenesis and WAT browning via CA2-AKT-UCP1 signaling pathway,which could be developed as promising anti-obesity agent with good safety and efficacy.展开更多
The 10th China Obesity Science Conference was held in Beijing from May 10th to 11th, 2024. Experts from authoritative institutions such as the National Health Commission, the Chinese Center for Disease Control and Pre...The 10th China Obesity Science Conference was held in Beijing from May 10th to 11th, 2024. Experts from authoritative institutions such as the National Health Commission, the Chinese Center for Disease Control and Prevention, and the China Institute of Sports Science gathered to discuss on the topics including obesity prevalence trends.展开更多
Objective This study aimed to evaluate the associations of serum folate and/or vitamin B12 concentrations with obesity among Chinese children and adolescents.Methods A cross-sectional study was conducted including 3,0...Objective This study aimed to evaluate the associations of serum folate and/or vitamin B12 concentrations with obesity among Chinese children and adolescents.Methods A cross-sectional study was conducted including 3,079 Chinese children and adolescents,aged 6 to 17 years,from Jiangsu,China.Anthropometric indices,such as,children's body mass index(BMI),BMI z-scores,waist circumference,and waist-to-height ratio were utilized.Multivariable linear regression and generalized additive models were used to investigate the associations of serum folate and vitamin B12 levels with anthropometric indices and odds of obesity.Results We observed that serum vitamin B12 concentrations were inversely associated with all anthropometric indices and the odds of general obesity[odds ratio(OR)=0.68;95%confidence interval(CI)=0.59,0.78]and abdominal obesity(OR=0.68;95%CI=0.60,0.77).When compared to participants with both serum vitamin levels in the two middle quartiles,those with both serum folate and vitamin B12 levels in the highest quartile were less prone to general(OR=0.31,95%CI=0.19,0.50)or abdominal obesity(OR=0.46,95%CI=0.31,0.67).Conversely,participants with vitamin B12 levels in the lowest quartile alongside folate levels in the highest quartile had higher odds of abdominal obesity(OR=2.06,95%CI=1.09,3.91).Conclusion Higher serum vitamin B12 concentrations,but not serum folate concentrations,were associated with lower odds of childhood obesity.Children and adolescents with high levels of vitamin B12 and folate were less likely to be obese.展开更多
Knee osteoarthritis(KOA)is a common progressive joint disease with chronic pain and movement disorders as the main clinical features.It is a major public health problem worldwide and it imposes serious medical and eco...Knee osteoarthritis(KOA)is a common progressive joint disease with chronic pain and movement disorders as the main clinical features.It is a major public health problem worldwide and it imposes serious medical and economic burdens.KOA accounts for nearly four-fifths of the global Osteoarthritis burden and increases with rising obesity and age[1].There are many reasons for the change in disease prevalence and risk factors,such as urbanization,lifestyle changes,population aging,and sex imbalances.展开更多
BACKGROUND Obesity is associated with a significantly increased risk for chronic diarrhea,which has been proposed as Linghu’s obesity-diarrhea syndrome(ODS);however,its molecular mechanisms are largely unknown.AIM To...BACKGROUND Obesity is associated with a significantly increased risk for chronic diarrhea,which has been proposed as Linghu’s obesity-diarrhea syndrome(ODS);however,its molecular mechanisms are largely unknown.AIM To reveal the transcriptomic changes in the jejunum involved in ODS.METHODS In a cohort of 6 ODS patients(JOD group),6 obese people without diarrhea(JO group),and 6 healthy controls(JC group),high-throughput sequencing and bioinformatics analyses were performed to identify jejunal mucosal mRNA expression alterations and dysfunctional biological processes.In another cohort of 16 ODS patients(SOD group),16 obese people without diarrhea(SO group),and 16 healthy controls(SC group),serum diamine oxidase(DAO)and D-lactate(DLA)concentrations were detected to assess changes in intestinal barrier function.RESULTS The gene expression profiles of jejunal mucosa in the JO and JC groups were similar,with only 1 differentially expressed gene(DEG).The gene expression profile of the JOD group was significantly changed,with 411 DEGs compared with the JO group and 211 DEGs compared with the JC group,129 of which overlapped.The enrichment analysis of these DEGs showed that the biological processes such as digestion,absorption,and transport of nutrients(especially lipids)tended to be up-regulated in the JOD group,while the biological processes such as rRNA processing,mitochondrial translation,antimicrobial humoral response,DNA replication,and DNA repair tended to be down-regulated in the JOD group.Eight DEGs(CDT1,NHP2,EXOSC5,EPN3,NME1,REG3A,PLA2G2A,and PRSS2)may play a key regulatory role in the pathological process of ODS,and their expression levels were significantly decreased in ODS patients(P<0.001).In the second cohort,compared with healthy controls,the levels of serum intestinal barrier function markers(DAO and D-LA)were significantly increased in all obese individuals(P<0.01),but were higher in the SOD group than in the SO group(P<0.001).CONCLUSION Compared with healthy controls and obese individuals without diarrhea,patients with Linghu’s ODS had extensive transcriptomic changes in the jejunal mucosa,likely affecting intestinal barrier function and thus contributing to the obesity and chronic diarrhea phenotypes.展开更多
Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is no...Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles(EVs)that play a role in the regulation of whole-body metabolism.Exosomes are a subtype of EVs,and accumulating evidence indicates that adipose tissue exosomes(AT Exos)mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms.However,the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated.In this review,we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders.Moreover,we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.展开更多
Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesi...Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesity effect.However,the classification of golden-flower fungi is still controversial;the anti-obesity effect of golden-flower fungus polysaccharides remains unknown.In this study,we identify a golden-flower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis,which resolves the controversy of classification.Moreover,we find A.cristatus polysaccharides(ACPS)attenuate obesity in rats.ACPS modulate gut bacterial composition.in which Akkermansia,Akkermansia muciniphila,Bacteroides,Romboutsia,Blautia,and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum,hepatic,and fecal total bile acid content.Furthermore,ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity,according to a fecal transplantation experiment.Thus,ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites.展开更多
The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders....The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.展开更多
Objective Overweight and obesity prevalence has increased in low-income countries.This study systematically reviewed the obesity trend,disparities,and prevention and control efforts in Nepal.Methods We searched PubMed...Objective Overweight and obesity prevalence has increased in low-income countries.This study systematically reviewed the obesity trend,disparities,and prevention and control efforts in Nepal.Methods We searched PubMed and Google Scholar for articles and reports published between January 1,2004 and December 31,2022.Additional information on National policies and programs related to obesity prevention was retrieved from governmental websites and consultation with relevant experts.Overweight and obesity were defined using the World Health Organization body mass index cut points.Thirty-two studies and reports were included.Results Overall,overweight and obesity rates increased in all groups in Nepal although nationally representative data remained limited.The combined overweight and obesity(OW/OB)and obesity rates in women aged 15-49 years increased from 8.5%to 22.2%and from 0.9%to 5.1%between 2006 and 2016,respectively.OW/OB and obesity rates in men were 17.1%and 2.5%based on data from the 2016 Demographic and Health Survey.OW/OB rate in under-five children increased from 0.6%to 2.8%between 2006 and 2016.Obesity rates for school-age(5-9 years)boys and girls in 2016 were 2.4%and 2.8%,respectively,and were 1.1%and 1.4%for male and female adolescents aged 10-19 years,respectively.OW/OB prevalence was much higher among women,residents in urban areas and central provinces,and in higher socioeconomic status groups.Projected prevalence of OW/OB and obesity for 2030 in adults aged 15-49 was 44.7%and 8.3%,respectively,while it was 2.2%for OW/OB in preschool children.Policies and direct interventions that specifically focused on obesity prevention and control are limited.Conclusions OW/OB prevalence in Nepal has increased during the past 1.8 decades,disproportionately affecting population groups.Existing interventions mostly focused on undernutrition with some indirect implications for obesity prevention.In the future,Nepal needs to develop population-based programs for obesity prevention.展开更多
Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity w...Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity were unclear.Therefore,we used different doses of JSTE(75,150 and 300 mg/(kg·day))to evaluate the effect on high-fat diet(HFD)-induced rats under 8 weeks of intervention.Here,our results showed that JSTE could significantly reduce body weight gain,blood lipid levels and fat accumulation,improve fatty damage in liver tissue(P<0.05).In addition,JSTE increased the expression of intestinal tight junction proteins(P<0.05),relieved metabolic endotoxemia(P<0.05)and chronic low-grade inflammation in HFD rats.Sequencing of fecal samples showed that JSTE could effectively reverse the microbial diversity and the ratio of Firmicutes to Bacteroidetes to normal levels in HFD-fed rats.Desulfovibrioceae and Erysipelotrichaceae,which are positively related to obesity,were decreased by JSTE intervention(P<0.05).while Bifidobacteriaceae,Bacteroidaceae,Akkermansia,and Clostridium,which are negatively related to obesity,were increased.Together,these results suggested that JSTE might effectively prevent obesity by modulating gut microbiota dysbiosis,intestinal barrier dysfunction,metabolic endotoxemia and chronic low-grade infl ammation in HFD-induced rats.展开更多
Akkermansia muciniphila play an important in ameliorating obesity but is not allowed for direct consumption in most countries.To date,microbiota-directed foods selectively promote the targeted human gut microbes,provi...Akkermansia muciniphila play an important in ameliorating obesity but is not allowed for direct consumption in most countries.To date,microbiota-directed foods selectively promote the targeted human gut microbes,providing a strategy for A.muciniphila enhancement.Multiple studies have indicated the potential regulation of the polyphenol on A.muciniphila.Therefore,a polyphenol screening based on A.muciniphila upregulation was performed in mice.Chlorogenic acid(CGA)exhibited a greater response to A.muciniphila upregulation.Furthermore,we found that CGA did not directly promote A.muciniphila growth or mucin secretion.Microbiome and metabolomics revealed that the increased abundance of A.muciniphila resulted from the inhibition of CGA on Desulfovibrio and Alistipes and the influence of docosahexaenoic acid,β-hydroxybutyrate,and N-acetyl-lactosamine.Finally,to confirm the regulation of CGA on A.muciniphila under disease conditions,high-fat diet-fed mice were established.The results showed CGA promoted A.muciniphila growth,and we expectedly found that CGA suppressed the augment in body weight of mice,significantly attenuated adipose tissue abnormality,provided liver protection and improved gut barrier integrity.These results suggest that CGA inhibits the development of obesity.Overall,our results indicate that microbiota-directed food is a promising approach for the treatment of obesity.展开更多
Many studies have revealed that gut microbes modulate host metabolism.In this study,we characterized the therapeutic effects of a novel gut commensal Luoshenia tenuis against host metabolic disorders.First,by in silic...Many studies have revealed that gut microbes modulate host metabolism.In this study,we characterized the therapeutic effects of a novel gut commensal Luoshenia tenuis against host metabolic disorders.First,by in silico analysis,we demonstrated that the L.tenuis was prevalent in the gut microbiomes of healthy humans but were depleted specifically in obesity cohorts.Further in vitro cultivation revealed that L.tenuis produced short chain fatty acids that were verified to modulate host metabolism and some other volatile metabolites to benefit hosts by anti-inflammation and anti-tumor.Second,gavage of the L.tenuis significantly decreased the body weight gain and food intake of high-fat diet-feeding C57BL/6J mice,which was in parallel with the changed expression level of genes related to satiety and feeding behavior.We then performed the gavage trial using diet induced obese mice,and it revealed that the administration of L.tenuis alleviated significantly the abnormal glucose and lipid metabolisms and reduced the inflammatory response.In summary,this study revealed a previously-unknown human gut commensal microbe that benefited host metabolism,and set the stage for the development of novel next-generation probiotic applicable for treatment of obesity and related metabolic disorders.展开更多
Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunb...Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.展开更多
基金supported by the project of the National Natural Science Foundation of China(32272331)the project of Fundamental Research Funds for the Central Universities(2662019PY034)。
文摘Obesity is associated with numerous metabolic disorders,and dietary polyphenols have been confirmed to have beneficial effects on the metabolism in obesity.However,the effect of 3-(3’,4’-dihydroxyphenyl)propanoic acid(DHPA)and 3’,4’-dihydroxyphenylacetic acid(DHAA),two main metabolites of dietary polyphenols,on obesity remains poorly understood.In this study,DHPA and DHAA were found to alleviate obesity,as well as regulate insulin resistance,lipid metabolism,and oxidative stress response in high-fat diet(HFD)mice.Surprisingly,the 16S rRNA sequencing and UHPLC-Q-TOF/MS demonstrated that DHPA and DHAA only slightly disturbed the intestinal microbiome,but significantly altered the urine metabolome of HFD mice mainly by regulating pentose and glucuronate interconversion,tyrosine metabolism,pentose phosphate and tricarboxylic acid(TCA)cycle as indicated by metabolic pathway analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG)database.Correlation analysis revealed that the differential metabolites are strongly associated with body weight,blood glucose,insulin level,and superoxide dismutase(SOD)enzyme activity.Our results revealed that DHPA and DHAA exert their anti-obesity effect by regulating important metabolites in the glucose,lipid and tyrosine metabolism pathways.
文摘Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis suffer from severe local and systemic complications and organ failure, leading to a poor prognosis. The early recognition of the severe condition is important to improve prognosis. Obesity has risen in tandem with an increase in the severity of acute pancreatitis in recent years. Studies have revealed that adipose tissue, particularly visceral adipose tissue is associated with the prognosis of acute pancreatitis. This review discussed the role of visceral adipose tissue in obese patients with acute pancreatitis and explored the possible mechanism involved.
文摘BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.
文摘In the retrospective study by Luo et al regarding clinical outcomes in gestational diabetes mellitus(GDM),the results are statistically significant in favour of the benefits of individualized nutrition interventions enumerated therein.The study has provided important evidence to improve maternal and child health in the Asian population.The methods,however,appear to have considerable limi-tations,wherein the time point of diagnosis of GDM,severity of GDM,selection bias,compliance to therapy,important maternal covariates,observable microvascular abnormalities and the confounding effect of added insulin have not been considered.We have provided suggestions to improve the external validity of the study,including the use of Equator Network reporting guidelines and inclusion of overweight and obese patients in future studies.
文摘The prevalence of metabolic-associated fatty liver disease(MAFLD)has increased substantially in recent years because of the global obesity pandemic.MAFLD,now recognized as the number one cause of chronic liver disease in the world,not only increases liver-related morbidity and mortality among sufferers but also worsens the complications associated with other comorbid conditions such as cardiovascular disease,type 2 diabetes mellitus,obstructive sleep apnoea,lipid disorders and sarcopenia.Understanding the interplay between MAFLD and these comorbidities is important to design optimal therapeutic strategies.Sarcopenia can be either part of the disease process that results in MAFLD(e.g.,obesity or adiposity)or a consequence of MAFLD,especially in the advanced stages such as fibrosis and cirrhosis.Sarcopenia can also worsen MAFLD by reducing exercise capacity and by the production of various muscle-related chemical factors.Therefore,it is crucial to thoroughly understand how we deal with these diseases,especially when they coexist.We explore the pathobiological interlinks between MAFLD and sarcopenia in this comprehensive clinical update review article and propose evidence-based therapeutic strategies to enhance patient care.
基金supported by the grants from the Natural Science Foundation of Beijing Municipality(Grant No.:7212185)the Scientific and Technological Innovation project of China Academy of Chinese Medical Sciences(Grant No.:CI2021A03808)+3 种基金the National Natural Science Foundation of China(Grant Nos.:82330124,81974526,and 82274176)the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine,China(Program No.:ZYYCXTD-C-202002)the Special Project for Training Outstanding Young Scientific and Technological Talents(innovative type)of Necessary Scientific Research Business Expenses of China Academy of Chinese Medical Sciences(Project Nos.:ZZ13-YQ-051,and ZZ15-YQ-063)the Fundamental Research Funds for the Central public welfare research institutes(Grant No.:ZXKT21010).
文摘Nowadays,roughly 603.7 million people are bothered by obesity[1].More seriously,obesity brings inflammation to the peripheral and central nervous system,which compromises the comorbidity of obesity,major depression[2],and cognitive deficits[3].Drug competent in the comorbidity is still lacking.In 2015,Liu et al.[4]reported celastrol(CEL)as a powerful anti-obesity agent.In our previous study.
基金supported by the grants from the CAMS Innovation Fund for Medical Sciences(CIFMS)(Grant No.:2021-I2M-1-026)the Beijing Natural Science Foundation of China(Grant Nos.:7212155 and 7162135).
文摘Obesity and related metabolic syndromes have been recognized as important disease risks,in which the role of adipokines cannot be ignored.Adiponectin(ADP)is one of the key adipokines with various beneficial effects,including improving glucose and lipid metabolism,enhancing insulin sensitivity,reducing oxidative stress and inflammation,promoting ceramides degradation,and stimulating adipose tissue vascularity.Based on those,it can serve as a positive regulator in many metabolic syndromes,such as type 2 diabetes(T2D),cardiovascular diseases,non-alcoholic fatty liver disease(NAFLD),sarcopenia,neurodegenerative diseases,and certain cancers.Therefore,a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors.The modulation of ADP genes,multimerization,and secretion covers the main processes of ADP generation,providing a comprehensive orientation for the development of more appropriate therapeutic strategies.In order to have a deeper understanding of ADP,this paper will provide an all-encompassing review of ADP.
基金funded by National Natural Science Foundation of China(NSFC 82070877)CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-JB-010,2021-I2M-1-005)The National High Technology Research and Development Program of China(2017YFE0112900).
文摘Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a“disease”.Brown adipose tissue(BAT)thermogenesis and white adipose tissue(WAT)browning emerge as a potential strategy of anti-obesity by dissipating energy as heat.However,drugs based on adipose tissue thermogenesis have not been successfully approved yet.In current study,we found that black tea extract(BTE)obtained by patentauthorized manufacturing process prevented body weight gain as novel thermogenic activator with reduction of adiposity,improvement of adipose distribution,and glucose metabolism improvement in diet-induced obesity mice.Mechanismly,anti-obesity effect of BTE depends on promoting BAT thermogenesis and WAT browning with upregulation of uncoupling protein 1(UCP1),especially visceral adipose tissue(VAT)with browning resistance.Specifically,utilizing in silico approach of network pharmacology and molecular docking,we identified carbonic anhydrase 2(CA2)in nitrogen metabolism as anti-obesity target of BTE and further elucidated that protein kinase B(AKT)signaling pathway linked CA2 and UCP1.Meanwhile gut microbiota regulation may prompt the CA2-dependent thermogenesis activation.Our findings demonstrated anti-obesity effect of BTE as thermogenic activator through CA2-mediated BAT thermogenesis and WAT browning via CA2-AKT-UCP1 signaling pathway,which could be developed as promising anti-obesity agent with good safety and efficacy.
文摘The 10th China Obesity Science Conference was held in Beijing from May 10th to 11th, 2024. Experts from authoritative institutions such as the National Health Commission, the Chinese Center for Disease Control and Prevention, and the China Institute of Sports Science gathered to discuss on the topics including obesity prevalence trends.
基金supported by the National Health Commission of the People’s Republic of China Medical Reform Major Program:China National Chronic Diseases and Nutrition Surveillance of Adults[2015-2017]Qianrang Zhu is funded by a China Scholarship Council PhD Scholarship[No.202109110099].
文摘Objective This study aimed to evaluate the associations of serum folate and/or vitamin B12 concentrations with obesity among Chinese children and adolescents.Methods A cross-sectional study was conducted including 3,079 Chinese children and adolescents,aged 6 to 17 years,from Jiangsu,China.Anthropometric indices,such as,children's body mass index(BMI),BMI z-scores,waist circumference,and waist-to-height ratio were utilized.Multivariable linear regression and generalized additive models were used to investigate the associations of serum folate and vitamin B12 levels with anthropometric indices and odds of obesity.Results We observed that serum vitamin B12 concentrations were inversely associated with all anthropometric indices and the odds of general obesity[odds ratio(OR)=0.68;95%confidence interval(CI)=0.59,0.78]and abdominal obesity(OR=0.68;95%CI=0.60,0.77).When compared to participants with both serum vitamin levels in the two middle quartiles,those with both serum folate and vitamin B12 levels in the highest quartile were less prone to general(OR=0.31,95%CI=0.19,0.50)or abdominal obesity(OR=0.46,95%CI=0.31,0.67).Conversely,participants with vitamin B12 levels in the lowest quartile alongside folate levels in the highest quartile had higher odds of abdominal obesity(OR=2.06,95%CI=1.09,3.91).Conclusion Higher serum vitamin B12 concentrations,but not serum folate concentrations,were associated with lower odds of childhood obesity.Children and adolescents with high levels of vitamin B12 and folate were less likely to be obese.
基金funded by the Capital Health Research and Development of Special Funds(NO:2022-1-7032)the High-level Talent Research Project of Beijing University of Chinese Medicine(NO2021-XJ-KYQD-001).
文摘Knee osteoarthritis(KOA)is a common progressive joint disease with chronic pain and movement disorders as the main clinical features.It is a major public health problem worldwide and it imposes serious medical and economic burdens.KOA accounts for nearly four-fifths of the global Osteoarthritis burden and increases with rising obesity and age[1].There are many reasons for the change in disease prevalence and risk factors,such as urbanization,lifestyle changes,population aging,and sex imbalances.
文摘BACKGROUND Obesity is associated with a significantly increased risk for chronic diarrhea,which has been proposed as Linghu’s obesity-diarrhea syndrome(ODS);however,its molecular mechanisms are largely unknown.AIM To reveal the transcriptomic changes in the jejunum involved in ODS.METHODS In a cohort of 6 ODS patients(JOD group),6 obese people without diarrhea(JO group),and 6 healthy controls(JC group),high-throughput sequencing and bioinformatics analyses were performed to identify jejunal mucosal mRNA expression alterations and dysfunctional biological processes.In another cohort of 16 ODS patients(SOD group),16 obese people without diarrhea(SO group),and 16 healthy controls(SC group),serum diamine oxidase(DAO)and D-lactate(DLA)concentrations were detected to assess changes in intestinal barrier function.RESULTS The gene expression profiles of jejunal mucosa in the JO and JC groups were similar,with only 1 differentially expressed gene(DEG).The gene expression profile of the JOD group was significantly changed,with 411 DEGs compared with the JO group and 211 DEGs compared with the JC group,129 of which overlapped.The enrichment analysis of these DEGs showed that the biological processes such as digestion,absorption,and transport of nutrients(especially lipids)tended to be up-regulated in the JOD group,while the biological processes such as rRNA processing,mitochondrial translation,antimicrobial humoral response,DNA replication,and DNA repair tended to be down-regulated in the JOD group.Eight DEGs(CDT1,NHP2,EXOSC5,EPN3,NME1,REG3A,PLA2G2A,and PRSS2)may play a key regulatory role in the pathological process of ODS,and their expression levels were significantly decreased in ODS patients(P<0.001).In the second cohort,compared with healthy controls,the levels of serum intestinal barrier function markers(DAO and D-LA)were significantly increased in all obese individuals(P<0.01),but were higher in the SOD group than in the SO group(P<0.001).CONCLUSION Compared with healthy controls and obese individuals without diarrhea,patients with Linghu’s ODS had extensive transcriptomic changes in the jejunal mucosa,likely affecting intestinal barrier function and thus contributing to the obesity and chronic diarrhea phenotypes.
基金supported by the National Natural Science Foundation of China(No.82070859).
文摘Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases,such as type 2 diabetes mellitus(T2DM),cardiovascular diseases,and non-alcoholic fatty liver disease(NAFLD).Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles(EVs)that play a role in the regulation of whole-body metabolism.Exosomes are a subtype of EVs,and accumulating evidence indicates that adipose tissue exosomes(AT Exos)mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms.However,the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated.In this review,we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders.Moreover,we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.
基金financially supported by Natural Science Foundation of China (32002095 and 32172217)Major Project of Science and Technology of Guangxi Zhuang Autonomous Region (AA20302018)+4 种基金Key Research and Development Program of Hunan Province (2020WK2017)Hunan“Three Top”Innovative Talents Project (2022RC1142)Natural Science Foundation of Hunan Province for Outstanding Young Scholars (2022JJ20028)Training Program for Excellent Young Innovators of Changsha (kq2107015)Scientific Research Fund of the Hunan Provincial Education Department (20A241)。
文摘Golden-flower fungus,the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea,is considered a potential probiotic fungus based on its anti-obesity effect.However,the classification of golden-flower fungi is still controversial;the anti-obesity effect of golden-flower fungus polysaccharides remains unknown.In this study,we identify a golden-flower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis,which resolves the controversy of classification.Moreover,we find A.cristatus polysaccharides(ACPS)attenuate obesity in rats.ACPS modulate gut bacterial composition.in which Akkermansia,Akkermansia muciniphila,Bacteroides,Romboutsia,Blautia,and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum,hepatic,and fecal total bile acid content.Furthermore,ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity,according to a fecal transplantation experiment.Thus,ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites.
基金financially supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08N291)the National Natural Science Foundation of China (31901689)the Natural Science Foundation of Guangdong Province,China (2021A1515012124)。
文摘The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.
基金This study was funded by the research grants from the Key Research and Development Program of Shaanxi Province of China(2022SF-125 and 2021ZDLSF02-14).
文摘Objective Overweight and obesity prevalence has increased in low-income countries.This study systematically reviewed the obesity trend,disparities,and prevention and control efforts in Nepal.Methods We searched PubMed and Google Scholar for articles and reports published between January 1,2004 and December 31,2022.Additional information on National policies and programs related to obesity prevention was retrieved from governmental websites and consultation with relevant experts.Overweight and obesity were defined using the World Health Organization body mass index cut points.Thirty-two studies and reports were included.Results Overall,overweight and obesity rates increased in all groups in Nepal although nationally representative data remained limited.The combined overweight and obesity(OW/OB)and obesity rates in women aged 15-49 years increased from 8.5%to 22.2%and from 0.9%to 5.1%between 2006 and 2016,respectively.OW/OB and obesity rates in men were 17.1%and 2.5%based on data from the 2016 Demographic and Health Survey.OW/OB rate in under-five children increased from 0.6%to 2.8%between 2006 and 2016.Obesity rates for school-age(5-9 years)boys and girls in 2016 were 2.4%and 2.8%,respectively,and were 1.1%and 1.4%for male and female adolescents aged 10-19 years,respectively.OW/OB prevalence was much higher among women,residents in urban areas and central provinces,and in higher socioeconomic status groups.Projected prevalence of OW/OB and obesity for 2030 in adults aged 15-49 was 44.7%and 8.3%,respectively,while it was 2.2%for OW/OB in preschool children.Policies and direct interventions that specifically focused on obesity prevention and control are limited.Conclusions OW/OB prevalence in Nepal has increased during the past 1.8 decades,disproportionately affecting population groups.Existing interventions mostly focused on undernutrition with some indirect implications for obesity prevention.In the future,Nepal needs to develop population-based programs for obesity prevention.
基金supported by National Modern Agricultural Industry Technology System(CARS-23)Yueyang Yellow Tea Product Innovation Research Project(2018xny-js053).
文摘Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity were unclear.Therefore,we used different doses of JSTE(75,150 and 300 mg/(kg·day))to evaluate the effect on high-fat diet(HFD)-induced rats under 8 weeks of intervention.Here,our results showed that JSTE could significantly reduce body weight gain,blood lipid levels and fat accumulation,improve fatty damage in liver tissue(P<0.05).In addition,JSTE increased the expression of intestinal tight junction proteins(P<0.05),relieved metabolic endotoxemia(P<0.05)and chronic low-grade inflammation in HFD rats.Sequencing of fecal samples showed that JSTE could effectively reverse the microbial diversity and the ratio of Firmicutes to Bacteroidetes to normal levels in HFD-fed rats.Desulfovibrioceae and Erysipelotrichaceae,which are positively related to obesity,were decreased by JSTE intervention(P<0.05).while Bifidobacteriaceae,Bacteroidaceae,Akkermansia,and Clostridium,which are negatively related to obesity,were increased.Together,these results suggested that JSTE might effectively prevent obesity by modulating gut microbiota dysbiosis,intestinal barrier dysfunction,metabolic endotoxemia and chronic low-grade infl ammation in HFD-induced rats.
基金supported by the Natural Science Foundation of Jiangsu Province[BK20200084]the National Natural Science Foundation of China[No.32122067 and 32021005]the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Akkermansia muciniphila play an important in ameliorating obesity but is not allowed for direct consumption in most countries.To date,microbiota-directed foods selectively promote the targeted human gut microbes,providing a strategy for A.muciniphila enhancement.Multiple studies have indicated the potential regulation of the polyphenol on A.muciniphila.Therefore,a polyphenol screening based on A.muciniphila upregulation was performed in mice.Chlorogenic acid(CGA)exhibited a greater response to A.muciniphila upregulation.Furthermore,we found that CGA did not directly promote A.muciniphila growth or mucin secretion.Microbiome and metabolomics revealed that the increased abundance of A.muciniphila resulted from the inhibition of CGA on Desulfovibrio and Alistipes and the influence of docosahexaenoic acid,β-hydroxybutyrate,and N-acetyl-lactosamine.Finally,to confirm the regulation of CGA on A.muciniphila under disease conditions,high-fat diet-fed mice were established.The results showed CGA promoted A.muciniphila growth,and we expectedly found that CGA suppressed the augment in body weight of mice,significantly attenuated adipose tissue abnormality,provided liver protection and improved gut barrier integrity.These results suggest that CGA inhibits the development of obesity.Overall,our results indicate that microbiota-directed food is a promising approach for the treatment of obesity.
基金financially supported by the National Key Research and Development Program of China(2021YFA0717002)。
文摘Many studies have revealed that gut microbes modulate host metabolism.In this study,we characterized the therapeutic effects of a novel gut commensal Luoshenia tenuis against host metabolic disorders.First,by in silico analysis,we demonstrated that the L.tenuis was prevalent in the gut microbiomes of healthy humans but were depleted specifically in obesity cohorts.Further in vitro cultivation revealed that L.tenuis produced short chain fatty acids that were verified to modulate host metabolism and some other volatile metabolites to benefit hosts by anti-inflammation and anti-tumor.Second,gavage of the L.tenuis significantly decreased the body weight gain and food intake of high-fat diet-feeding C57BL/6J mice,which was in parallel with the changed expression level of genes related to satiety and feeding behavior.We then performed the gavage trial using diet induced obese mice,and it revealed that the administration of L.tenuis alleviated significantly the abnormal glucose and lipid metabolisms and reduced the inflammatory response.In summary,this study revealed a previously-unknown human gut commensal microbe that benefited host metabolism,and set the stage for the development of novel next-generation probiotic applicable for treatment of obesity and related metabolic disorders.
基金supported by Korea Institute of Marine Science&Technology Promotion(KIMST)funded by the Ministry of Oceans and Fisheries,Korea(20220488)。
文摘Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.