期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluation of semivariogram features for objectbased image classification 被引量:2
1
作者 Xian WU Jianwei PENG +1 位作者 Jie SHAN Weihong CUI 《Geo-Spatial Information Science》 SCIE EI CSCD 2015年第4期159-170,共12页
Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divid... Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs. 展开更多
关键词 object based image analysis image segmentation image classification texture feature SEMIVARIOGRAM
原文传递
Big Earth data:disruptive changes in Earth observation data management and analysis? 被引量:8
2
作者 Martin Sudmanns Dirk Tiede +4 位作者 Stefan Lang Helena Bergstedt Georg Trosta Hannah Augustin Andrea Baraldi Thomas Blaschke 《International Journal of Digital Earth》 SCIE 2020年第7期832-850,共19页
Turning Earth observation(EO)data consistently and systematically into valuable global information layers is an ongoing challenge for the EO community.Recently,the term‘big Earth data’emerged to describe massive EO ... Turning Earth observation(EO)data consistently and systematically into valuable global information layers is an ongoing challenge for the EO community.Recently,the term‘big Earth data’emerged to describe massive EO datasets that confronts analysts and their traditional workflows with a range of challenges.We argue that the altered circumstances must be actively intercepted by an evolution of EO to revolutionise their application in various domains.The disruptive element is that analysts and end-users increasingly rely on Web-based workflows.In this contribution we study selected systems and portals,put them in the context of challenges and opportunities and highlight selected shortcomings and possible future developments that we consider relevant for the imminent uptake of big Earth data. 展开更多
关键词 Digital earth data access satellite data portals objectbased image analysis(OBIA) remote sensing workflow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部