期刊文献+
共找到1,406篇文章
< 1 2 71 >
每页显示 20 50 100
The Fusion of Temporal Sequence with Scene Priori Information in Deep Learning Object Recognition
1
作者 Yongkang Cao Fengjun Liu +2 位作者 Xian Wang Wenyun Wang Zhaoxin Peng 《Open Journal of Applied Sciences》 2024年第9期2610-2627,共18页
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe... For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance. 展开更多
关键词 Computer Vison object Recognition Deep Learning Consecutive Scene Information fusion
下载PDF
基于改进Centerfusion的自动驾驶3D目标检测模型
2
作者 黄俊 刘家森 《无线电工程》 2024年第2期507-514,共8页
针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富... 针对自动驾驶路面上目标漏检和错检的问题,提出一种基于改进Centerfusion的自动驾驶3D目标检测模型。该模型通过将相机信息和雷达特征融合,构成多通道特征数据输入,从而增强目标检测网络的鲁棒性,减少漏检问题;为了能够得到更加准确丰富的3D目标检测信息,引入了改进的注意力机制,用于增强视锥网格中的雷达点云和视觉信息融合;使用改进的损失函数优化边框预测的准确度。在Nuscenes数据集上进行模型验证和对比,实验结果表明,相较于传统的Centerfusion模型,提出的模型平均检测精度均值(mean Average Precision,mAP)提高了1.3%,Nuscenes检测分数(Nuscenes Detection Scores,NDS)提高了1.2%。 展开更多
关键词 传感器融合 3D目标检测 注意力机制 毫米波雷达
下载PDF
CNN-Transformer特征融合多目标跟踪算法 被引量:4
3
作者 张英俊 白小辉 谢斌红 《计算机工程与应用》 CSCD 北大核心 2024年第2期180-190,共11页
在卷积神经网络(CNN)中,卷积运算能高效地提取目标的局部特征,却难以捕获全局表示;而在视觉Transformer中,注意力机制可以捕获长距离的特征依赖,但会忽略局部特征细节。针对以上问题,提出一种基于CNN-Transformer双分支主干网络进行特... 在卷积神经网络(CNN)中,卷积运算能高效地提取目标的局部特征,却难以捕获全局表示;而在视觉Transformer中,注意力机制可以捕获长距离的特征依赖,但会忽略局部特征细节。针对以上问题,提出一种基于CNN-Transformer双分支主干网络进行特征提取和融合的多目标跟踪算法CTMOT(CNN-transformer multi-object tracking)。使用基于CNN和Transformer双分支并行的主干网络分别提取图像的局部和全局特征。使用双向桥接模块(two-way braidge module,TBM)对两种特征进行充分融合。将融合后的特征输入两组并行的解码器进行处理。将解码器输出的检测框和跟踪框进行匹配,完成多目标跟踪任务。在多目标跟踪数据集MOT17、MOT20、KITTI以及UADETRAC上进行评估,CTMOT算法的MOTP和IDs指标在四个数据集上均达到了SOTA效果,MOTA指标分别达到了76.4%、66.3%、92.36%和88.57%,在MOT数据集上与SOTA方法效果相当,在KITTI数据集上达到SOTA效果。由于同时完成目标检测和关联,能够端到端进行目标跟踪,跟踪速度可达35 FPS,表明CTMOT算法在跟踪的实时性和准确性上达到了较好的平衡,具有较大潜力。 展开更多
关键词 多目标跟踪 TRANSFORMER 特征融合
下载PDF
基于自适应融合的实时车辆检测 被引量:1
4
作者 陈婷 朱熟康 +3 位作者 高涛 李浩 涂辉招 李子琦 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期532-540,共9页
针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种... 针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种轻量级的互补池化结构(CPS),该结构在宽度和高度上采用了两组不同的池化组合,在保持高精度的同时,显著降低了网络的浮点运算数(GFLOPs)和参数量。为了解决智能交通系统特征图生成过程中的信息损失问题,通过将自适应注意力模块(AAM)和特征增强模块(FEM)引入自适应融合特征金字塔网络(AF-FPN),以融入车辆检测的形状特征。针对车辆细节特征表征弱的问题,引入了一种按通道维度分组的注意力(SA)机制,以增强主干网络对不同车辆检测细节特征的关注,有效提取车辆细节的显著特征。在BDD100K数据集上的实验结果表明,FAAP-Net算法相比于传统算法,平均精度从30.3%提升到43.7%。 展开更多
关键词 目标检测 车辆检测 互补池化 自适应融合 通道维度分组注意力
下载PDF
AF-CenterNet:基于交叉注意力机制的毫米波雷达和相机融合的目标检测 被引量:2
5
作者 车俐 吕连辉 蒋留兵 《计算机应用研究》 CSCD 北大核心 2024年第4期1258-1263,共6页
对于自动驾驶领域而言,确保在各种天气和光照条件下精确检测其他车辆目标是至关重要的。针对单个传感器获取信息的局限性,提出一种基于cross-attention注意力机制的融合方法(AF),用于在特征层面上融合毫米波雷达和相机信息。首先,将毫... 对于自动驾驶领域而言,确保在各种天气和光照条件下精确检测其他车辆目标是至关重要的。针对单个传感器获取信息的局限性,提出一种基于cross-attention注意力机制的融合方法(AF),用于在特征层面上融合毫米波雷达和相机信息。首先,将毫米波雷达和相机进行空间对齐,并将对齐后的点云信息投影成点云图像。然后,将点云图像在高度和宽度方向上进行扩展,以提高相机图像和点云图像之间的匹配度。最后,将点云图像和相机图像送入包含AF结构的CenterNet目标检测网络中进行训练,并生成一个空间注意力权重,以增强相机中的关键特征。实验结果表明,AF结构可以提高原网络检测各种大小目标的性能,特别是对小目标的检测提升更为明显,且对系统的实时性影响不大,是提高车辆在多种场景下检测精度的理想选择。 展开更多
关键词 自动驾驶 目标检测 毫米波雷达 交叉注意力融合
下载PDF
电力巡检中改进YOLOv5s的缺陷检测算法研究 被引量:1
6
作者 王磊 郝涌汀 +3 位作者 潘明然 赵慕东 张永鑫 张茗宇 《计算机工程与应用》 CSCD 北大核心 2024年第10期256-265,共10页
针对无人机进行电力巡检时关键零件的检测精度较低的问题,提出了一种基于YOLOv5s的改进型缺陷检测算法。在骨干网络中引入卷积神经网络注意力模块(CBAM),增强网络对特征图中重要信息的提取效率;将YOLOv5s中原有的PANet特征融合框架替换... 针对无人机进行电力巡检时关键零件的检测精度较低的问题,提出了一种基于YOLOv5s的改进型缺陷检测算法。在骨干网络中引入卷积神经网络注意力模块(CBAM),增强网络对特征图中重要信息的提取效率;将YOLOv5s中原有的PANet特征融合框架替换为双向特征金字塔网络(BiFPN),引入可学习的权重,映射不同的学习特征,增加对贡献较大特征的映射。在空间金字塔池化模块(spatial pyramid pooling,SPP)的基础上加入上下文卷积模块,提升特征的表达能力。通过构建航拍数据集进行实验验证,结果表明,改进后的算法mAP达到95.6%,准确率达到93.7%,召回率达到93.8%。为进一步验证算法在嵌入式系统的运行效果,通过缩小网络宽度进行轻量化,利用TensorRT推理引擎,优化了网络结构并加速了模型的推理。将模型加速后部署至Jetson Xavier NX平台进行测试,单帧图像平均运行时间为24.6 ms,检测准确率为90.8%,召回率为90.5%,能够在Jetson Xavier NX设备上对目标实现精准识别。改进后的模型提高了检测精度,体现了算法的有效性,满足电力巡检作业的实时检测需求。 展开更多
关键词 电力巡检 目标检测 注意力机制 特征融合 YOLO
下载PDF
基于注意力与多级特征融合的YOLOv5算法
7
作者 王瑜 毕玉 +2 位作者 石健彤 肖洪兵 孙梅 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期38-45,95,共9页
针对复杂场景下目标检测与识别精度较低的问题,提出了一种基于注意力与多级特征融合的YOLOv5目标检测与识别算法。该算法在传统YOLOv5s模型的主干网络中引入双空间方向的金字塔切分注意力机制,增强对特征空间和通道信息的学习能力,同时... 针对复杂场景下目标检测与识别精度较低的问题,提出了一种基于注意力与多级特征融合的YOLOv5目标检测与识别算法。该算法在传统YOLOv5s模型的主干网络中引入双空间方向的金字塔切分注意力机制,增强对特征空间和通道信息的学习能力,同时在瓶颈网络中采用多级特征融合结构,对不同分支的特征进行融合,增加特征的丰富性,提升应对复杂场景的能力。此外,利用C3Ghost模块和深度可分离卷积分别替换C3模块和普通卷积,降低网络参数量和复杂度。结果表明:与传统的YOLOv5s算法相比,所提算法在VOC2007+2012数据集的均值平均精度高达85%,在智能零售柜商品识别数据集的均值平均精度高达97.2%,表现出较好的性能。 展开更多
关键词 深度学习 YOLOv5s 目标检测 多级特征融合 注意力机制
下载PDF
面向民机可视导航的场面多尺度目标检测
8
作者 章涛 张雪瑞 +2 位作者 陈勇 钟科林 罗其俊 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第11期1816-1825,共10页
民航飞机视觉辅助驾驶系统通过机载视觉传感器获取周边威胁态势信息,为飞行员提供辅助决策等信息,但是机载视觉传感器获取的机场场面威胁目标尺度变化大,且机载平台算力有限,现有的目标检测方法难以满足视觉辅助驾驶需求.针对上述问题,... 民航飞机视觉辅助驾驶系统通过机载视觉传感器获取周边威胁态势信息,为飞行员提供辅助决策等信息,但是机载视觉传感器获取的机场场面威胁目标尺度变化大,且机载平台算力有限,现有的目标检测方法难以满足视觉辅助驾驶需求.针对上述问题,提出一种基于YOLOv5s算法的轻量化多尺度目标检测算法.首先,为增强场面小目标的特征表达,在加权双向特征金字塔网络(BIFPN)基础上,引入坐标注意力(CA)机制,设计CA-BIFPN特征融合网络,提高模型对多种尺度目标的学习能力.然后,设计GSConv解耦检测头,相互独立优化分类和回归目标,提高目标检测的精度.设计的跨级部分网络轻量化颈部模块可减少因引入解耦头增加的参数量,大幅提高整体网络的检测速度,实现场面目标实时检测.为了验证算法性能,构建机载视觉传感器滑行视角的实测数据、仿真数据组成的多尺度场面目标数据集.在该数据集上的实验结果表明,所提方法检测精度超过Faster R-CNN、SSD和YOLOv6、YOLOv7、YOLOX等经典多尺度目标检测算法,均值平均精度为71.40%,比YOLOv5s提高4.19个百分点;在机载计算仿真实验平台上,检测帧率达到71帧/s,满足实时检测要求. 展开更多
关键词 YOLOv5s算法 民机可视导航 多尺度目标检测 特征融合网络 解耦检测头
下载PDF
基于ATO-YOLO的小目标检测算法 被引量:2
9
作者 苏佳 秦一畅 +1 位作者 贾泽 王静 《计算机工程与应用》 CSCD 北大核心 2024年第6期68-77,共10页
小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结... 小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。 展开更多
关键词 YOLOv5 多尺度特征融合 自适应特征提取 小目标检测
下载PDF
适用于约束环境的轻量级目标检测模型
10
作者 曲海成 袁旭东 李佳琦 《计算机工程与应用》 CSCD 北大核心 2024年第6期274-281,共8页
为了进一步降低目标检测模型YOLOX-Tiny的大小并提高检测精度,以便于更好地适用于计算资源和存储空间有限的环境,在特征金字塔的结构、解耦头的结构和损失函数上对其进行改进,形成一种更高性能的轻量级目标检测模型Lite-YOLOX。为进一... 为了进一步降低目标检测模型YOLOX-Tiny的大小并提高检测精度,以便于更好地适用于计算资源和存储空间有限的环境,在特征金字塔的结构、解耦头的结构和损失函数上对其进行改进,形成一种更高性能的轻量级目标检测模型Lite-YOLOX。为进一步压缩原有模型体积,重新设计特征金字塔和解耦头的结构,使模型的Neck和Head部分更轻量化;为提升模型的检测精度,在原有IoU损失函数的基础上进行优化,设计并提出EIoU损失函数,改进后的损失函数对真实框和预测框的位置更加敏感;选取PASCAL VOC和安全帽检测数据集对改进模型进行验证。实验结果表明:Lite-YOLOX与YOLOX-Tiny相比,参数量减少40%,计算量下降37.5%,mAP50提升3.2和3.1个百分点。在NVIDIA Jetson Xavier NX上,每秒传输帧数(FPS)从51增加到59,实时性有了明显的提升。 展开更多
关键词 目标检测 轻量化 特征融合 损失函数
下载PDF
激光雷达和相机的决策级融合目标检测方法
11
作者 龙科军 余娟 +3 位作者 费怡 向凌云 骆嫚 杨双辉 《长沙理工大学学报(自然科学版)》 CAS 2024年第1期133-140,共8页
【目的】激光雷达与相机这两类传感器检测数据格式不统一、分辨率不同,且数据级和特征级的融合计算复杂度高,故提出一种决策级的目标融合检测方法。【方法】对激光雷达与相机的安装位置进行联合标定,实现这两类传感器检测结果的坐标系转... 【目的】激光雷达与相机这两类传感器检测数据格式不统一、分辨率不同,且数据级和特征级的融合计算复杂度高,故提出一种决策级的目标融合检测方法。【方法】对激光雷达与相机的安装位置进行联合标定,实现这两类传感器检测结果的坐标系转换;利用匈牙利算法将激光雷达点云检测目标框和相机图像检测目标框进行匹配,设定目标框重合面积阈值,检测获得目标物的位置、类型等。【结果】实车测试结果表明,根据检测目标检测框长宽比选取不同交并比阈值的方法使得车辆和行人的目标识别准确率分别提升了3.3%和5.3%。利用公开数据集KITTI对所提融合方法进行验证,结果表明,在3种不同难度等级场景下,所提融合方法的检测精度分别达到了75.42%、69.71%、63.71%,与现有常用的融合方法相比,检测精度均有所提升。【结论】这两类传感器的检测目标框重合面积阈值对决策级融合检测结果影响较大,根据检测目标检测框长宽比选取不同阈值可有效提升车辆和行人的目标识别准确率。决策级融合方法能准确匹配雷达和相机的检测目标,有效提升目标检测精度。 展开更多
关键词 目标检测 决策级融合 匈牙利算法 激光雷达 相机 环境感知
下载PDF
基于YOLOv5s的水稻种子逐粒检测装置研制
12
作者 吴迅 翁伟 +1 位作者 李香格 朱同宇 《兰州石化职业技术大学学报》 2024年第3期21-26,共6页
针对农机化智能检测场景下的水稻种子批量单粒活力检测的需求,结合计算机视觉目标检测技术,设计并研制气吸式种子逐粒检测装置。为解决水稻种子这一小目标的检测效果不佳和漏检问题,提出一种基于YOLOv5s的改进算法。在检测网络中设计上... 针对农机化智能检测场景下的水稻种子批量单粒活力检测的需求,结合计算机视觉目标检测技术,设计并研制气吸式种子逐粒检测装置。为解决水稻种子这一小目标的检测效果不佳和漏检问题,提出一种基于YOLOv5s的改进算法。在检测网络中设计上下文特征融合机制,利用新的特征融合方式增强网络多尺度空间和通道信息表征,并添加CA注意力模块,在此基础上改善网络特征融合性能。设计由排列装置、传送装置、检测装置、分选装置等组成的水稻种子逐粒分选线。选取中嘉早17、甬优538和中浙优10三种不同外形的水稻为试验对象,以吸嘴直径、转速、压力作为自变量,以吸空率、单粒吸附率和识别正确率为考核指标,对影响水稻种子检测效果进行试验研究和分析,对于三种不同形状的种子分别选取恰当的吸嘴直径、转速、压力能够有效地吸附并逐粒排列。试验结果表明:改进算法结合研制的系统能满足不同场景检测要求。 展开更多
关键词 小目标检测 特征融合机制 逐粒排序 气吸式 单粒吸附率
下载PDF
结合轻量化与多尺度融合的交通标志检测算法 被引量:1
13
作者 兰红 王惠钊 《计算机工程》 CAS CSCD 北大核心 2024年第10期381-392,共12页
交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义。针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与... 交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义。针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与多尺度融合的交通标志检测网络架构M-YOLO,构建M-YOLOs模型来应对高精度需求的检测任务,并调整网络深度得到更轻量化的M-YOLOn模型来解决不同环境下的检测需求。首先针对交通标志目标尺寸小、图像特征流失的问题,通过增加小目标检测层,保留更多的特征信息,提高网络对于小目标的特征学习能力。提出高效多尺度特征金字塔融合网络MPANet,将浅层特征图进行降维与跳跃连接,从而融合更多的图像特征信息。然后提出融合稀疏注意力和空间注意力的BRSA注意力模块,有效提取全局和局部的位置信息,减少复杂背景下对于关键信息的干扰。最后设计两种轻量高效的BBot模块和C2fGhost模块,以提高模型运算速度并减少参数量。实验结果表明,M-YOLO相较于YOLOv8,参数量降低约1/3。在TT100K数据集和GTSDB数据集上,M-YOLOs检测精度分别提升了9.7和2.1个百分点,M-YOLOn检测精度分别提升了14.5和2.6个百分点,在轻量化的同时具备更高的检测效果。M-YOLO架构解决了浅层特征图在特征提取过程中信息丢失的问题,并显著降低模型特征提取过程中冗余的计算开销,在实景采集的数据集上证实效果有效,表明在交通标志检测任务中具有应用价值。 展开更多
关键词 卷积神经网络 轻量化模型 目标检测 注意力模块 多尺度融合
下载PDF
基于YOLOv5的复杂背景下植物叶片检测研究
14
作者 刘志强 杨昭 +1 位作者 王建伊 张旭 《计算机技术与发展》 2024年第8期49-56,共8页
对植物叶片进行检测是研究植物表型性状的基础,但真实环境下叶片间相互遮挡、叶片边缘特征不明显、幼叶目标过小以及外部环境如光照条件等因素影响会对叶片检测效果造成很大的障碍。针对复杂背景下的叶片检测,该研究提出了一种基于改进Y... 对植物叶片进行检测是研究植物表型性状的基础,但真实环境下叶片间相互遮挡、叶片边缘特征不明显、幼叶目标过小以及外部环境如光照条件等因素影响会对叶片检测效果造成很大的障碍。针对复杂背景下的叶片检测,该研究提出了一种基于改进YOLOv5模型植物叶片检测方法。通过在骨干网络中引入空洞卷积,使得网络可以捕获到更广阔范围的上下文信息;利用双向连接的加权特征金字塔网络,以增强目标叶片特征提取并更好地融合特征信息;利用注意力机制,通过动态地调整注意力分布,以提高边缘特征表达能力。测试结果表明,在Plant Village数据集筛选的葡萄叶片图像以及自拍摄葡萄生长叶片上测试改进算法的可行性,改进的YOLOv5模型其叶片检测mAP比原生模型提高了5.8%,遮挡叶片检测精度提高了7.09%。叶片检测效果有显著提升。该研究提出的方法可以有效解决复杂背景下植物叶片检测效果不佳的问题,为植物表型研究提供技术支撑。 展开更多
关键词 叶片检测 复杂背景 多尺度融合 小目标检测 深度学习
下载PDF
结合特征融合与增强注意力的少样本目标检测
15
作者 李新叶 侯晔凝 +1 位作者 孔英会 燕志旗 《计算机应用》 CSCD 北大核心 2024年第3期745-751,共7页
为了更充分地利用支持特征和查询特征中的关键信息,提出一种基于特征融合和增强注意力的少样本目标检测方法FFA-FSOD(Feature Fusion and enhanced Attention Few-Shot Object Detection)。首先引入迭代注意力特征融合(iAFF)模块,以有... 为了更充分地利用支持特征和查询特征中的关键信息,提出一种基于特征融合和增强注意力的少样本目标检测方法FFA-FSOD(Feature Fusion and enhanced Attention Few-Shot Object Detection)。首先引入迭代注意力特征融合(iAFF)模块,以有效融合支持图像和查询图像的关键特征;其次在iAFF模块后添加特征增强操作,充分利用支持特征信息对查询图像中的目标特征进行增强。为避免上述两次处理可能导致的查询图像特征部分细节信息的丢失,对iAFF模块中的多尺度通道注意力模块(MS-CAM)进行改进,以捕获更多的上下文信息。在MS COCO数据集上的实验结果表明,在2-way 10-shot条件下,与小样本目标检测(FSOD)方法相比,加入iAFF模块、特征增强操作并改进MS-CAM后,FFA-FSOD的平均精度均值(mAP)提升了8.0%。实验结果验证了所提特征融合增强方法充分关注到了特征中的细节信息,从而实现了更好的少样本目标检测效果。 展开更多
关键词 目标检测 少样本 特征融合 特征增强 Faster R-CNN
下载PDF
基于YOLOv7改进的夜间樱桃检测方法:YOLOv7-Cherry
16
作者 盖荣丽 孔祥宙 +1 位作者 秦山 魏凯 《计算机工程与应用》 CSCD 北大核心 2024年第21期315-323,共9页
针对樱桃检测算法无法对夜晚环境下的樱桃进行成熟度识别的问题,提出一种改进的YOLOv7算法:YOLOv7-Cherry。使用一种将夜间樱桃图像和白天相同位置的樱桃图像相融合的图像预处理方法,保留夜间樱桃图像高空间分辨信息的同时加强其光谱分... 针对樱桃检测算法无法对夜晚环境下的樱桃进行成熟度识别的问题,提出一种改进的YOLOv7算法:YOLOv7-Cherry。使用一种将夜间樱桃图像和白天相同位置的樱桃图像相融合的图像预处理方法,保留夜间樱桃图像高空间分辨信息的同时加强其光谱分辨率。在YOLOv7-Cherry中,将CBAM注意力机制插入到骨干网络中,利用注意力机制强化神经网络的表征能力,强调重要特征,忽略次要特征,加强对樱桃目标特征的提取;为了加强目标检测算法对图像中小樱桃的识别,增加小目标检测层;改进了原始网络的初始检测框大小;为了减少遮挡对樱桃目标造成的损失,对检测框使用了Soft-NMS方法进行冗余去除。实验结果表明,YOLOv7-Cherry可以有效地识别出夜晚环境下的成熟樱桃和未成熟樱桃,与YOLOv3、Faster-RCNN、YOLOv4、YOLOv5和原YOLOv7相比,YOLOv7-Cherry的mAP提高了26.88、25.05、22.51、17.11和7.66个百分点,其中,识别精度、召回率、mAP和F1为93.9%、94.7%、97.4%、94.3%。 展开更多
关键词 图像融合 YOLOv7 目标检测 小目标 夜间樱桃识别
下载PDF
MFE-YOLOX:无人机航拍下密集小目标检测算法 被引量:2
17
作者 马俊燕 常亚楠 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期128-135,共8页
针对无人机航拍时物体尺度变化大,检测目标大多较小且物体较密集的问题,提出一种混合特征增强结构(mix feature enhancement, MFE)方法。通过在超分辨率方法中加入注意力机制以增强小目标信息提取,利用一种新的特征层融合计算方法,加强... 针对无人机航拍时物体尺度变化大,检测目标大多较小且物体较密集的问题,提出一种混合特征增强结构(mix feature enhancement, MFE)方法。通过在超分辨率方法中加入注意力机制以增强小目标信息提取,利用一种新的特征层融合计算方法,加强不同特征层间的融合效率,提高了中小型目标的检测精度;设计了尾端感受野扩大层以扩大尾端特征层感受野,使检测头可接收丰富的物体信息来定位并区分密集物体。实验在数据集VisDrone2021的测试集上进行测试,MFE-YOLOX网络的AP50结果为47.78%,在参数量、计算量与原网络相近的情况下精度提高了9.43个百分点。 展开更多
关键词 小目标检测 无人机 注意力机制 特征融合 YOLOX
下载PDF
窗口锚定的偏移受限动态蛇形卷积网络航拍小目标检测
18
作者 张荣国 秦震 +2 位作者 胡静 王丽芳 刘小君 《模式识别与人工智能》 EI CSCD 北大核心 2024年第8期663-677,共15页
为了从小目标有限特征中获取关键的有效信息,提升小目标的定位能力和检测精度,文中提出窗口锚定的偏移受限动态蛇形卷积网络航拍小目标检测方法.首先,构造偏移受限动态蛇形卷积,在不同方位动态偏移,受限蛇形卷积核自适应地关注不同大小... 为了从小目标有限特征中获取关键的有效信息,提升小目标的定位能力和检测精度,文中提出窗口锚定的偏移受限动态蛇形卷积网络航拍小目标检测方法.首先,构造偏移受限动态蛇形卷积,在不同方位动态偏移,受限蛇形卷积核自适应地关注不同大小和形状的特征区域,使特征提取聚焦于微小局部结构,促进小目标特征的捕获.然后,采用双阶段多尺度特征融合方法,对不同层阶特征图进行特征对齐、融合和注入,增强底层细节信息与高层语义信息的融合,并强化不同尺寸目标信息传输,提高小目标的检测能力.与此同时,设计窗口锚定的边界框回归损失函数,基于辅助边界框和最小点距离进行边界回归,获得准确的回归结果,提高小目标的定位能力.最后,在3个航拍数据集上的实验表明,文中方法对小目标的检测性能有不同程度的改善和提高. 展开更多
关键词 小目标检测 特征提取 特征融合 多尺度特征 边界框回归损失函数
下载PDF
结合对象属性识别的图像场景图生成方法研究
19
作者 周浩 罗廷金 崔国恒 《计算机科学》 CSCD 北大核心 2024年第11期205-212,共8页
场景图生成在视觉场景深度理解任务中发挥着重要的作用。现有的场景图生成方法主要关注场景中对象的位置、类别以及对象之间的关系,而忽略了对象属性蕴含的丰富场景语义信息。为了将图像属性语义融入场景图,提出了一种结合对象属性识别... 场景图生成在视觉场景深度理解任务中发挥着重要的作用。现有的场景图生成方法主要关注场景中对象的位置、类别以及对象之间的关系,而忽略了对象属性蕴含的丰富场景语义信息。为了将图像属性语义融入场景图,提出了一种结合对象属性识别的图像场景图生成方法。首先针对属性识别的多标签分类问题,提出了一种基于混合分类器的属性分类损失函数来进行属性识别,通过结合二值交叉熵函数训练的二分类器和改进的团组交叉熵函数训练的多分类器来实现单个属性分类的查准率和多个属性预测的查全率全面提升。其次,通过将属性识别分支与原有场景图框架进行融合,将提取的属性信息作为额外的上下文语义与对象特征进行融合后辅助对象之间关系的识别。最后,模型在VG150数据集上与多个基准模型进行了对比实验,结果表明所提模型的对象属性预测和关系识别均取得了更优的结果。 展开更多
关键词 场景图生成 对象属性识别 属性融合 关系预测 多标签分类 团组交叉熵函数
下载PDF
基于注意力与密集重参数化的目标检测算法
20
作者 陈志旺 雷春明 +2 位作者 吕昌昊 王婷 彭勇 《高技术通讯》 CAS 北大核心 2024年第3期233-247,共15页
针对目标检测任务中背景复杂、目标尺寸差异大等因素导致目标检测结果较差的问题,本文提出基于注意力和密集重参数化的目标检测算法。首先,基于CSP-DarkNet提出高效的特征提取网络,主要包括密集重参数化模块和CASA模块2个设计。前者利... 针对目标检测任务中背景复杂、目标尺寸差异大等因素导致目标检测结果较差的问题,本文提出基于注意力和密集重参数化的目标检测算法。首先,基于CSP-DarkNet提出高效的特征提取网络,主要包括密集重参数化模块和CASA模块2个设计。前者利用密集连接保留浅层特征,又通过重参数化结构降低网络复杂度;后者CASA模块用于获取需要的目标信息。其次,特征融合在特征金字塔(FPN)和路径聚合网络(PAN)的基础上,引入内容感知特征重组(CARAFE)进行上采样,有效解决了邻近插值法等未能捕捉丰富语义信息的问题;提出更高效的C3-G模块,获取丰富的梯度信息,增强模型表达能力和感知能力;同时,引入深度可分离卷积提升运算效率。最后,检测输出采用在更大范围上跨领域正负样本匹配策略扩充正样本数量,提升检测效果。该算法在MS COCO和PASCAL VOC数据集上的mAP@0.5分别达到了57.5%和83.0%,充分说明了本文算法的先进性。 展开更多
关键词 目标检测 重参数化 注意力机制 特征融合 上采样 正负样本匹配
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部