近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光...近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。展开更多
Taking TM images, SPOT photos and DEM images as the basic information, this paper had not only put forward a kind of manual controlled computer-automatic extraction method, but also completed the task of extracting th...Taking TM images, SPOT photos and DEM images as the basic information, this paper had not only put forward a kind of manual controlled computer-automatic extraction method, but also completed the task of extracting the main types of ground objects in the Three Gorges Reservoir area under relatively high accuracy, after finishing such preprocessing tasks as correcting the topographical spectrum and synthesizing the data. Taking the specialized image analysis software-eCognition as the platform, the research achieved the goal of classifying through choosing samples, picking out the best wave bands, and producing the identifying functions. At the same time the extraction process partly dispelled the influence of such phenomena as the same thing with different spectrums, different things with the same spectrum, border transitions, etc. The research did certain exploration in the aspect of technological route and method of using automatic extraction of the remote sensing image to obtain the information of land cover for the regions whose ground objects have complicated spectrums.展开更多
Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projec...Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projects cannot be carried out and many researchers are excluded.Since about 80%of the time in data-intensive projects is wasted according to surveys we need to conclude that we are not fit for the challenges that will come with the billions of smart devices producing continuous streams of data-our methods do not scale.Therefore experts worldwide are looking for strategies and methods that have a potential for the future.The first steps have been made since there is now a wide agreement from the Research Data Alliance to the FAIR principles that data should be associated with persistent identifiers(PID)and metadata(MD).In fact after 20 years of experience we can claim that there are trustworthy PID systems already in broad use.It is argued,however,that assigning PIDs is just the first step.If we agree to assign PIDs and also use the PID to store important relationships such as pointing to locations where the bit sequences or different metadata can be accessed,we are close to defining Digital Objects(DOs)which could indeed indicate a solution to solve some of the basic problems in data management and processing.In addition to standardizing the way we assign PIDs,metadata and other state information we could also define a Digital Object Access Protocol as a universal exchange protocol for DOs stored in repositories using different data models and data organizations.We could also associate a type with each DO and a set of operations allowed working on its content which would facilitate the way to automatic processing which has been identified as the major step for scalability in data science and data industry.A globally connected group of experts is now working on establishing testbeds for a DO-based data infrastructure.展开更多
文摘近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。
基金Under the auspices of the Construction Committeeof Three GorgesR eservoirProject(No .SX [2002]00401) andChineseAcademy ofSciences(No .KZCX2-SW-319-01 )
文摘Taking TM images, SPOT photos and DEM images as the basic information, this paper had not only put forward a kind of manual controlled computer-automatic extraction method, but also completed the task of extracting the main types of ground objects in the Three Gorges Reservoir area under relatively high accuracy, after finishing such preprocessing tasks as correcting the topographical spectrum and synthesizing the data. Taking the specialized image analysis software-eCognition as the platform, the research achieved the goal of classifying through choosing samples, picking out the best wave bands, and producing the identifying functions. At the same time the extraction process partly dispelled the influence of such phenomena as the same thing with different spectrums, different things with the same spectrum, border transitions, etc. The research did certain exploration in the aspect of technological route and method of using automatic extraction of the remote sensing image to obtain the information of land cover for the regions whose ground objects have complicated spectrums.
文摘Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projects cannot be carried out and many researchers are excluded.Since about 80%of the time in data-intensive projects is wasted according to surveys we need to conclude that we are not fit for the challenges that will come with the billions of smart devices producing continuous streams of data-our methods do not scale.Therefore experts worldwide are looking for strategies and methods that have a potential for the future.The first steps have been made since there is now a wide agreement from the Research Data Alliance to the FAIR principles that data should be associated with persistent identifiers(PID)and metadata(MD).In fact after 20 years of experience we can claim that there are trustworthy PID systems already in broad use.It is argued,however,that assigning PIDs is just the first step.If we agree to assign PIDs and also use the PID to store important relationships such as pointing to locations where the bit sequences or different metadata can be accessed,we are close to defining Digital Objects(DOs)which could indeed indicate a solution to solve some of the basic problems in data management and processing.In addition to standardizing the way we assign PIDs,metadata and other state information we could also define a Digital Object Access Protocol as a universal exchange protocol for DOs stored in repositories using different data models and data organizations.We could also associate a type with each DO and a set of operations allowed working on its content which would facilitate the way to automatic processing which has been identified as the major step for scalability in data science and data industry.A globally connected group of experts is now working on establishing testbeds for a DO-based data infrastructure.