期刊文献+
共找到155篇文章
< 1 2 8 >
每页显示 20 50 100
基于自适应融合的实时车辆检测 被引量:1
1
作者 陈婷 朱熟康 +3 位作者 高涛 李浩 涂辉招 李子琦 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期532-540,共9页
针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种... 针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种轻量级的互补池化结构(CPS),该结构在宽度和高度上采用了两组不同的池化组合,在保持高精度的同时,显著降低了网络的浮点运算数(GFLOPs)和参数量。为了解决智能交通系统特征图生成过程中的信息损失问题,通过将自适应注意力模块(AAM)和特征增强模块(FEM)引入自适应融合特征金字塔网络(AF-FPN),以融入车辆检测的形状特征。针对车辆细节特征表征弱的问题,引入了一种按通道维度分组的注意力(SA)机制,以增强主干网络对不同车辆检测细节特征的关注,有效提取车辆细节的显著特征。在BDD100K数据集上的实验结果表明,FAAP-Net算法相比于传统算法,平均精度从30.3%提升到43.7%。 展开更多
关键词 目标检测 车辆检测 互补池化 自适应融合 通道维度分组注意力
下载PDF
基于改进YOLOv8的煤矿输送带异物检测 被引量:1
2
作者 洪炎 汪磊 +2 位作者 苏静明 汪瀚涛 李木石 《工矿自动化》 CSCD 北大核心 2024年第6期61-69,共9页
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8... 现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。 展开更多
关键词 输送带异物检测 YOLOv8 SE网络 高效通道注意力机制 轻量化 小目标检测 自适应平均池化 自适应最大池化
下载PDF
基于改进YOLOv5s算法的禁捕期长江渔船识别及应用研究
3
作者 崔秀芳 王认认 +2 位作者 林浩涛 夏霖波 韩沛霖 《海洋渔业》 CSCD 北大核心 2024年第3期371-380,共10页
长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合... 长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合长江船舶尺寸的锚框;使用轻量高效的坐标注意力(coordinate attention,CA)机制,提升模型关注目标通道信息特征的能力;采用SPPCSPPC(spatial pyramid pooling and context-aware spatial pyramid pooling combination)对特征图进行池化,提高小目标检测能力;通过构建长江船舶数据集训练得到最优权值模型。结果显示,改进后的模型在准确率、召回率、mAP0.5、mAP0.5∶0.9和原模型相比分别提高了1.5%、3.0%、2.4%、7.7%,且训练过程损失收敛更快,收敛值更低,能够准确快速识别出长江上的渔船目标。研究结果可为长江十年禁渔提供技术支持。 展开更多
关键词 目标检测 YOLOv5s 聚类算法 注意力机制 空间金字塔池化
下载PDF
CIEFRNet:面向高速公路的抛洒物检测算法 被引量:1
4
作者 李旭 宋焕生 +3 位作者 史勤 张朝阳 刘泽东 孙士杰 《计算机工程与应用》 CSCD 北大核心 2024年第5期336-346,共11页
高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征... 高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征提纯的抛洒物检测算法,记为CIEFRNet。设计了一种融合上下文Transformer的主干特征提取模块(CSP-COT),充分挖掘局部静态上下文信息和全局动态上下文信息,增强小抛洒物的特征表示;主干网络中使用改进的空间金字塔池化(ISPP),通过级联的空洞卷积实现特征的多尺度下采样,减轻目标细节信息的损失;为提高特征融合能力,设计了特征提纯模块(CNAB),其中嵌入了提出的一种混合注意力机制(ECSA),可抑制图像背景噪声,强化微小抛洒物的特征;引入基于动态非单调聚焦机制的WIoU优化损失函数,提高小抛洒物学习能力,加速网络收敛。实验结果表明,所提方法在自制的高速公路抛洒物数据集上的精确率、召回率、AP0.5和AP0.5:0.95分别达到96.5%、81.6%、88.1%和46.5%,优于当前主流的目标检测方法,其算法复杂度也更低,满足实际场景应用需要。 展开更多
关键词 抛洒物检测 上下文信息 空间金字塔池化 注意力机制 损失函数
下载PDF
引入Transformer的道路小目标检测
5
作者 李丽芬 黄如 《计算机工程与设计》 北大核心 2024年第1期95-101,共7页
针对道路场景中检测小目标时漏检率较高、检测精度低的问题,提出一种引入Transformer的道路小目标检测算法。在原YOLOv4算法基础上,对多尺度检测进行改进,把浅层特征信息充分利用起来;设计ICvT(improved convolutional vision transform... 针对道路场景中检测小目标时漏检率较高、检测精度低的问题,提出一种引入Transformer的道路小目标检测算法。在原YOLOv4算法基础上,对多尺度检测进行改进,把浅层特征信息充分利用起来;设计ICvT(improved convolutional vision transformer)模块捕获特征内部的相关性,获得上下文信息,提取更加全面丰富的特征;在网络特征融合部分嵌入改进后的空间金字塔池化模块,在保持较小计算量的同时增加特征图的感受野。实验结果表明,在KITTI数据集上,算法检测精度达到91.97%,与YOLOv4算法相比,mAP提高了2.53%,降低了小目标的漏检率。 展开更多
关键词 小目标检测 深度学习 YOLOv4算法 多尺度检测 TRANSFORMER 空间金字塔池化 特征融合
下载PDF
YOLOV5s object detection based on Sim SPPF hybrid pooling 被引量:1
6
作者 DONG Xiuhuan LI Shixin ZHANG Jixiang 《Optoelectronics Letters》 EI 2024年第6期367-371,共5页
Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once v... Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once version 5s(YOLOV5s) model is proposed. The algorithm introduces channel attention(CA) module, simplified SPPF feature vector pyramid and efficient intersection over union(EIOU) loss function. Feature vector pyramids fuse high-dimensional and low-dimensional features, which makes semantic information richer. The CA mechanism performs maximum pooling and average pooling operations on the feature map. Hybrid pooling comprehensively improves detection computing efficiency and accurate deployment ability. The results show that the improved YOLOV5s model is better than the original YOLOV5s model. The average test accuracy(mAP) can reach 91.8%, which can be increased by 17.4%, and the detection speed can reach 108 FPS, which can be increased by 18 FPS. The improved model is practicable, and the overall performance is better than other conventional models. 展开更多
关键词 YOLOV5s object detection based on Sim SPPF hybrid pooling
原文传递
可提高检测精度的电力标识牌智能检测方法
7
作者 朱建宝 桑顺 +2 位作者 马青山 俞鑫春 张斌 《电气自动化》 2024年第1期101-103,共3页
电力安全标识牌检测是智能电力安全作业管控系统的重要组成部分。为提高复杂电力场景下安全标识牌的检测精度,提出了一种基于改进YOLO的电力安全标识牌检测方法。在YOLO的基础上,通过增加预测层分辨率提升网络对小目标的预测能力。此外... 电力安全标识牌检测是智能电力安全作业管控系统的重要组成部分。为提高复杂电力场景下安全标识牌的检测精度,提出了一种基于改进YOLO的电力安全标识牌检测方法。在YOLO的基础上,通过增加预测层分辨率提升网络对小目标的预测能力。此外,引入索引池化机制,利用池化掩码限制无用信息的引入,提高了网络分类识别的精确度。试验结果表明,改进后的检测网络在电力标识牌测试集上的平均精度均值达到了75.2%,比常规方法提高了3.2%。所提智能检测方法能够提升电力标识牌的检测识别能力,有利于保障电力生产安全。 展开更多
关键词 电力标识牌 深度学习 目标检测 索引池化 网络识别
下载PDF
多视野精细分析下的弱监督目标定位算法
8
作者 张英俊 贾聪聪 谢斌红 《计算机工程与设计》 北大核心 2024年第6期1750-1756,共7页
针对多尺度目标定位精度较差,难以捕获完整目标边界的问题,设计一种多视野精细分析模块并融入通道与空间注意力机制抑制背景噪声的干扰,获取多尺度目标的高分辨率特征。利用随机特征选取模块获取特征图随机位置的组合,聚合多个位置图获... 针对多尺度目标定位精度较差,难以捕获完整目标边界的问题,设计一种多视野精细分析模块并融入通道与空间注意力机制抑制背景噪声的干扰,获取多尺度目标的高分辨率特征。利用随机特征选取模块获取特征图随机位置的组合,聚合多个位置图获取最具辨别性的位置及其它位置的信息,融合浅层生成的类激活图与聚合类激活图获取细粒度位置信息,捕获完整的目标边界。与现有的弱监督定位方法相比,在解决多尺度目标定位效果差和局部最优问题上具有一定的优势。 展开更多
关键词 弱监督学习 目标定位 多尺度特征融合 注意力机制 全局平均池化 类激活图 正则化
下载PDF
多尺度渐近特征融合的遥感目标检测算法研究
9
作者 王海群 赵涛 王柄楠 《电光与控制》 CSCD 北大核心 2024年第12期33-40,共8页
针对遥感图像目标尺度多样、小目标密集、背景环境复杂导致检测时出现的漏检及误检等问题,提出一种基于YOLOv8n改进的多尺度渐近特征融合的遥感目标检测算法。首先,构建结合多尺度残差网络的Res2C2f模块,更有效地捕捉不同尺度的特征;其... 针对遥感图像目标尺度多样、小目标密集、背景环境复杂导致检测时出现的漏检及误检等问题,提出一种基于YOLOv8n改进的多尺度渐近特征融合的遥感目标检测算法。首先,构建结合多尺度残差网络的Res2C2f模块,更有效地捕捉不同尺度的特征;其次,设计跨级连接金字塔池化模块来改善原金字塔池化模块特征提取能力不足的问题;然后,重构多尺度的渐近特征融合网络来实现多尺度信息的交换,充分利用不同层级的特征来增强特征融合效果;最后,增加160×160尺寸的小目标检测层,提升模型在密集场景下对小目标的检测效果。在DOTA数据集中,相比基线模型,改进算法的精确率、召回率、平均精度均值分别提升了4.8、4.0和3.7个百分点。 展开更多
关键词 YOLOv8 遥感图像 渐近特征融合 多尺度残差网络 金字塔池化 小目标检测层
下载PDF
面向嵌入式端的轻量级交通信号灯检测算法 被引量:1
10
作者 杨永波 李栋 +2 位作者 房建东 董祥 李毅伟 《计算机工程与应用》 CSCD 北大核心 2024年第13期361-368,共8页
针对现有交通信号灯检测算法计算量和模型大,嵌入式端部署难,且对远距离交通信号灯的检测难度大,漏检率高等问题,设计了一种面向嵌入式端的轻量级交通信号灯检测算法,针对轻量化和实时性要求,采用GhostNet网络Ghost模块和Ghost瓶颈层结... 针对现有交通信号灯检测算法计算量和模型大,嵌入式端部署难,且对远距离交通信号灯的检测难度大,漏检率高等问题,设计了一种面向嵌入式端的轻量级交通信号灯检测算法,针对轻量化和实时性要求,采用GhostNet网络Ghost模块和Ghost瓶颈层结构,减少了模型参数量,提升了检测速度;针对特征相似问题,采用加权双向特征金字塔网络结构,使得算法对目标更敏感;使用密集空洞空间金字塔池化,优化全局上下文信息的提取;针对小目标识别问题,通过多尺度检测的改进,增强对小目标的信息提取;通过知识蒸馏,提升模型学习能力,进而提高检测性能。实验结果表明,该检测算法对交通信号灯的识别精度达到了97.0%,召回率达到了99%,较YOLOv5s算法分别提高了2.7和3个百分点,模型大小减小到8.06 MB,是YOLOv5s的58%,识别速率从51帧每秒提升到56帧每秒,通过在嵌入式端的测试,改进后算法对远距离下的交通信号灯能够实时准确地识别。 展开更多
关键词 目标检测 轻量级 GhostNet 知识蒸馏 密集空洞空间金字塔池化
下载PDF
基于YOLOv5s与PP-LC的电气化铁路接触网异物入侵检测模型设计
11
作者 高赟贤 张晓飞 韩朝建 《自动化应用》 2024年第19期171-173,共3页
为及时检测接触网的异物入侵情况,并为工作人员提供高效准确的监测结果,结合YOLO系列版本5算法和轻量级CPU卷积神经网络构建了接触网异物入侵检测模型。该模型在传统YOLO系列版本5算法的基础上引入轻量级CPU卷积神经网络、注意力机制以... 为及时检测接触网的异物入侵情况,并为工作人员提供高效准确的监测结果,结合YOLO系列版本5算法和轻量级CPU卷积神经网络构建了接触网异物入侵检测模型。该模型在传统YOLO系列版本5算法的基础上引入轻量级CPU卷积神经网络、注意力机制以及金字塔池化结构,并对其主干网络进行改进;同时,引入新的卷积模块改进算法的颈部结构。结果表明,研究设计模型的检测平均准确率为95.74%,且在与其他流行模型的比较实验中,其检测速度为0.012 s/帧,明显比其他模型快。该设计模型能在保证检测精度的基础上实现较高效率的异物检测。 展开更多
关键词 电气化铁路 接触网 异物检测 YOLOv5s 金字塔池化
下载PDF
渐进式结构的餐具检测与识别网络
12
作者 林淑彬 李中旭 +2 位作者 何奇晗 杨文元 徐星 《三明学院学报》 2024年第3期17-24,50,共9页
构建渐进式餐具检测与识别网络,将快速空间金字塔池化融合到渐进式颈部网络,得到不同尺度特征并逐级融合。首先,通过主干网络从原始图像提取不同语义信息的多尺度特征图。其次,通过融合相邻低级特征,将高级特征融合到自适应空间,形成渐... 构建渐进式餐具检测与识别网络,将快速空间金字塔池化融合到渐进式颈部网络,得到不同尺度特征并逐级融合。首先,通过主干网络从原始图像提取不同语义信息的多尺度特征图。其次,通过融合相邻低级特征,将高级特征融合到自适应空间,形成渐进式颈部结构,得到3个不同尺度的特征代表。最后,通过解耦检测头获得识别结果。实验结果表明,餐具检测与识别精确度为96.9%。 展开更多
关键词 深度学习 目标检测 空间金字塔池化 自适应空间 餐具检测与识别
下载PDF
基于注意力机制的多任务目标计数系统设计
13
作者 李永慧 《电视技术》 2024年第7期47-52,共6页
提出基于注意力机制的深层神经网络用于目标计数,其任务是为输入图像的目标进行精确数目统计。该网络模型同时引进多任务学习方法,多尺度融合得到密度特征图和注意力特征图进行目标计数。首先,使用交叉特征金字塔网络进行特征提取;其次... 提出基于注意力机制的深层神经网络用于目标计数,其任务是为输入图像的目标进行精确数目统计。该网络模型同时引进多任务学习方法,多尺度融合得到密度特征图和注意力特征图进行目标计数。首先,使用交叉特征金字塔网络进行特征提取;其次,将提取的特征分别用于密度特征图及注意力特征图进行交叉融合;最后,通过多任务学习将两个输出特征图逐元素运算,得到精确的密度特征图。提出的网络模型在行人检测数据集(ShanghaiTech)与多类别的行为识别数据集(UCF_CC_50)上进行了训练与测试,实验结果表明,通过在各个分支引入注意力机制,可以有效提高整个模型预测结果的准确率。 展开更多
关键词 目标计数 注意力机制 多任务学习 交叉特征金字塔网络
下载PDF
复杂背景下的无人机图像小目标检测 被引量:2
14
作者 王晓红 胡豫 《计算机工程与应用》 CSCD 北大核心 2023年第15期107-114,共8页
针对无人机航拍图像背景复杂、目标特征小而导致检测精度低的问题,提出了一种基于YOLOv7-w6改进的小目标检测算法EMT-ECoTNet。采用具有全局建模优势的CoT模块和增加最大池化层MaxPool用以挖掘小目标更多纹理信息的MA-ECA通道注意力模... 针对无人机航拍图像背景复杂、目标特征小而导致检测精度低的问题,提出了一种基于YOLOv7-w6改进的小目标检测算法EMT-ECoTNet。采用具有全局建模优势的CoT模块和增加最大池化层MaxPool用以挖掘小目标更多纹理信息的MA-ECA通道注意力模块构建的ECoT Block,有利于小目标特征提取;通过具有大感受野的空间金字塔池化结构M-SPPFCSPC对小目标特征进一步增强;使用EIoU损失函数分别对预测框和真实框之间宽和高的预测结果进行惩罚来提高收敛速度和准确率。实验结果表明,EMT-ECoTNet在VisDrone数据集上mAP50达到62.8%,较原始基线模型YOLOv7-w6提高了3.2个百分点,比主流算法在无人机小目标检测任务上具有更好的检测性能。 展开更多
关键词 无人机图像 复杂背景 小目标检测 注意力机制 空间金字塔池化
下载PDF
关联增强改进的CenterNet安全帽检测方法 被引量:3
15
作者 黄品超 刘石坚 +1 位作者 徐戈 邹峥 《计算机工程与应用》 CSCD 北大核心 2023年第17期250-256,共7页
施工现场的安全帽佩戴状况自动化检测是保障员工安全的重要手段,目前所面临的挑战包括安全帽目标往往较小、密集且部分被遮挡,难以兼顾方法的精确度和实时性等。为此,提出一种关联增强的CenterNet改进方法。为充分发挥CenterNet逐像素... 施工现场的安全帽佩戴状况自动化检测是保障员工安全的重要手段,目前所面临的挑战包括安全帽目标往往较小、密集且部分被遮挡,难以兼顾方法的精确度和实时性等。为此,提出一种关联增强的CenterNet改进方法。为充分发挥CenterNet逐像素分类的特点,引入关联融合模块来实现深、浅层特征的融合,弥补信息损失;同时使用上下文注意力提升模块来引导关联多级增强,进一步提升检测精度,降低误检率;此外,分阶段实施轻量化策略,剔除冗余、精简网络,极大降低权重规模、提升算法效率。该方法在复杂场景数据集上的准确率为88.6%,平均推理时间12ms,平均权重大小19.5MB,均优于主流对比方法。实验结果证明,该方法兼具强实时性与高准确度,适合复杂场景中的安全帽检测。 展开更多
关键词 目标检测 CenterNet 注意力机制 金字塔池化
下载PDF
基于改进YOLOv3的安全帽佩戴检测算法 被引量:1
16
作者 张旭 董绍江 +1 位作者 胡小林 牟小燕 《机床与液压》 北大核心 2023年第24期26-32,共7页
针对复杂工业场景下安全帽佩戴检测存在检测精度低、误检率和漏检率高以及检测速度慢等问题,提出一种改进YOLOv3的识别精度高、检测速度快的安全帽佩戴检测算法。对传统YOLOv3主干网络进行裁剪改进,使检测速度得到明显提升;引入空间金... 针对复杂工业场景下安全帽佩戴检测存在检测精度低、误检率和漏检率高以及检测速度慢等问题,提出一种改进YOLOv3的识别精度高、检测速度快的安全帽佩戴检测算法。对传统YOLOv3主干网络进行裁剪改进,使检测速度得到明显提升;引入空间金字塔池化模块使局部特征和全局特征更有效地融合;将损失函数改进为CIoU以提升目标预测框与真实目标框的拟合效果;扩充第四特征融合尺度用于小目标检测以提高小目标的识别精度。结果表明:在复杂工业环境下,改进后的YOLOv3安全帽佩戴检测的平均检测精度提高了2.37%,且检测速度提升了2.7倍,同时降低了安全帽佩戴检测的漏检率以及误检率。 展开更多
关键词 目标检测 YOLOv3 空间金字塔池化 安全帽佩戴检测
下载PDF
基于图神经网络的变电站场景三维目标检测 被引量:3
17
作者 张婷 张兴忠 +2 位作者 王慧民 杨罡 王大伟 《计算机工程与应用》 CSCD 北大核心 2023年第9期329-336,共8页
在变电站三维场景中,对巡检人员和带电设备的精确定位与识别是提高人员安全管控水平的前提。针对变电站复杂场景中目标定位与识别不准的问题,提出了一种基于图神经网络的变电站场景三维目标检测方法。该方法基于point-GNN结构设计,在顶... 在变电站三维场景中,对巡检人员和带电设备的精确定位与识别是提高人员安全管控水平的前提。针对变电站复杂场景中目标定位与识别不准的问题,提出了一种基于图神经网络的变电站场景三维目标检测方法。该方法基于point-GNN结构设计,在顶点特征提取阶段,提出PCS(point-channel-sphere)注意力结构,提取更加丰富的关键点特征信息;在GNN边缘特征聚合阶段,采用统筹性池化机制,兼顾最大池化和均值池化从而获取更丰富的全局特征;改进模型损失函数,将Focal Loss作为分类损失使训练更加关注前景点,将DIoU Loss作为回归损失使回归任务更高效。在自建的变电站场景数据集上进行训练与测试,实验表明该方法 mAP值达到73.81%,优于基准模型,能够改善变电站场景中目标的检测效果,对提高人员安全管控水平具有一定的实用价值。 展开更多
关键词 图神经网络 三维目标检测 点云 注意力 统筹性池化 损失函数
下载PDF
基于改进CenterNet网络的绝缘子检测方法 被引量:3
18
作者 孙晗 邹宽胜 《计算机技术与发展》 2023年第3期57-62,共6页
针对输电线路中绝缘子检测准确率不足以及检测时间长的问题,提出一种基于Anchor free(无先验框)的绝缘子检测算法;以CenterNet网络模型为基础,使用Resnet50网络作为特征提取网络,在保证速度的前提下加深网络增强特征提取能力;引入金字... 针对输电线路中绝缘子检测准确率不足以及检测时间长的问题,提出一种基于Anchor free(无先验框)的绝缘子检测算法;以CenterNet网络模型为基础,使用Resnet50网络作为特征提取网络,在保证速度的前提下加深网络增强特征提取能力;引入金字塔池化模块,通过局部多尺度的特征融合提取更加丰富的绝缘子特征信息,避免对绝缘子的漏判从而提升检测精度;对收集的航拍绝缘子图像进行数据增强,建立实验数据集;在网络训练中使用迁移学习的思想,对主干网络进行冻结的方式提高训练效率。通过实验发现,相比较原网络模型,绝缘子检测的平均精度与召回率分别提升16.34%、36.06%,与其他六种网络模型相比较,检测精度与速度均有所提升,具有良好的检测性能及实时性。 展开更多
关键词 绝缘子 目标检测 无先验框 金字塔池化 特征融合
下载PDF
基于改进YOLOX的落石检测方法 被引量:2
19
作者 陈垦 欧鸥 +3 位作者 杨长志 龚帅 欧阳飞 向东升 《计算机测量与控制》 2023年第11期53-59,共7页
山坡地区是落石频发的区域,凭人力难以及时发现灾害的发生;为及时检测到落石的发生并做出应对措施,提出一种基于改进YOLOX的落石检测方法,自动检测并报告落石的发生情况;通过自制落石数据集训练YOLOX网络,优化空间金字塔池化结构,获取... 山坡地区是落石频发的区域,凭人力难以及时发现灾害的发生;为及时检测到落石的发生并做出应对措施,提出一种基于改进YOLOX的落石检测方法,自动检测并报告落石的发生情况;通过自制落石数据集训练YOLOX网络,优化空间金字塔池化结构,获取更多语义信息,并引入ECA-Net(Efficient Channel Attention Module,高效通道注意力模块),提高特征的提取能力和特征间的信息传播,同时改进损失函数并使用数据增强,提高网络训练效果;实验结果表明,改进YOLOX算法的mAP@0.5为92.50%,每秒检测帧数为62.6,相较于YOLOX算法,mAP@0.5提高3.45%,每秒检测帧数上涨0.3;与原算法相比,在不损失性能的情况下,精度有较大的提升,同时满足图片与视频数据的实时检测要求。 展开更多
关键词 YOLOX 目标检测 落石检测 注意力机制 空间金字塔池化
下载PDF
基于改进YOLOv7的口罩佩戴检测 被引量:3
20
作者 付惠琛 高军伟 车鲁阳 《液晶与显示》 CAS CSCD 北大核心 2023年第8期1139-1147,共9页
佩戴好口罩是居民预防新冠和配合国家疫情防控的有效方式。针对口罩佩戴是否正确、拍摄角度不同以及被遮挡等问题,提出了一种改进的YOLOv7算法。该算法以YOLOv7为基础,在网络的Head区引入卷积注意力机制,使得特征网络在对口罩区域的处... 佩戴好口罩是居民预防新冠和配合国家疫情防控的有效方式。针对口罩佩戴是否正确、拍摄角度不同以及被遮挡等问题,提出了一种改进的YOLOv7算法。该算法以YOLOv7为基础,在网络的Head区引入卷积注意力机制,使得特征网络在对口罩区域的处理中更具有针对性,从而增强特征网络对口罩区域的学习能力;对Backbone区结构进行优化,对ConvNeXt网络结构进行改进,并引入网络中代替部分卷积,提高模型的检测精度和鲁棒性,增强预测精确度的同时不会引入大量额外的计算。对Head层的空间金字塔池化进行改进,提高了训练速度并且加快模型收敛。实验结果表明,在复杂及遮挡的情况下,改进后的YOLOv7的损失函数大幅下降,在测试集上的mAP为93.8%,相比于原始YOLOv7算法提高了3.6%。各个类别的检测精度均有提升,没佩戴口罩、正确佩戴口罩、不正确佩戴口罩类别的精度分别提升6.8%、2.1%、1.7%。本文算法的错检情况明显减少,泛化能力有显著提升。 展开更多
关键词 图像处理 目标检测 YOLOv7算法 卷积注意力机制 空间金字塔池化
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部