The unsteady aerodynamic loads generated by the thin-shell object separating from aircraft affects flying safety.To investigate the loads,a method combining numerical simulation and experiment is proposed.Firstly,the ...The unsteady aerodynamic loads generated by the thin-shell object separating from aircraft affects flying safety.To investigate the loads,a method combining numerical simulation and experiment is proposed.Firstly,the motional tendency of the thin-shell object separating from aircraft is calculated,and then the high-speed air blowing test on ground is designed.Thereafter,the external store is employed to avoid colliding with the thin-shell object in air.Finally,the hanging and flight test is conducted by a high-speed unmanned aerial vehicle(UAV),and the feasibility of the thin-shell object separating from aircraft at high speed is proved.Consequently,the separating problem of a thin-shell object with an unconventional aerodynamic configuration is solved,and the collisions with aircraft is prevented.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.XZA14027)
文摘The unsteady aerodynamic loads generated by the thin-shell object separating from aircraft affects flying safety.To investigate the loads,a method combining numerical simulation and experiment is proposed.Firstly,the motional tendency of the thin-shell object separating from aircraft is calculated,and then the high-speed air blowing test on ground is designed.Thereafter,the external store is employed to avoid colliding with the thin-shell object in air.Finally,the hanging and flight test is conducted by a high-speed unmanned aerial vehicle(UAV),and the feasibility of the thin-shell object separating from aircraft at high speed is proved.Consequently,the separating problem of a thin-shell object with an unconventional aerodynamic configuration is solved,and the collisions with aircraft is prevented.