Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point ...Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.展开更多
针对传统固定权重多目标无功优化在应对新型电力系统复杂多变的工况时无法针对实时工况做出最合适的控制决策的问题,提出一种自适应多目标无功优化控制策略。该策略以系统有功网损和并网点电压偏离量的加权最小作为目标函数,目标函数的...针对传统固定权重多目标无功优化在应对新型电力系统复杂多变的工况时无法针对实时工况做出最合适的控制决策的问题,提出一种自适应多目标无功优化控制策略。该策略以系统有功网损和并网点电压偏离量的加权最小作为目标函数,目标函数的权重系数根据并网点电压的偏离情况自适应调节。首先,分析海上风电场并网点电压波动与有功、无功输出的关系,建立相应的无功分配模型,并针对风电机组及静止无功发生器(static var ge nerator,SVG)的输入输出特性,建立相应的无功控制模型。此外,考虑海上运行的功率约束、安全运行约束等,采用变惯性权重粒子群优化算法对无功控制策略进行求解。最后,在MATLAB中搭建海上风电场模型进行仿真验证,仿真算例表明:相较于传统固定权重多目标无功优化,自适应多目标无功优化控制策略可以根据电网实时工况,迅速调整各优化目标的优先级,较好地实现有功网损和并网点电压的协调优化。展开更多
文摘Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.
文摘[目的]在滑坡易发性评价中,滑坡预测模型的选取和优化对运算过程的高效性和预测结果的准确性至关重要。针对现有单目标遗传优化算法(genetic algorithm,GA)易陷入早熟、局部搜索能力差、全局优化速度慢等问题,拟提出一种新的优化算法框架,将多目标遗传算法中的经典算法—带精英选择策略的非支配排序算法(the nondominated sorting genetic algorithm with an elite strategy,NSGA-Ⅱ)与常用机器学习模型[随机森林(random forest,RF)、支持向量机(support vector machine,SVM)]相结合,进行滑坡易发性预测。与单目标优化不同的是,NSGA-Ⅱ算法可同时进行特征选择和超参数优化,并使预测模型同时实现最优准确度、召回率、精密度和AUC(area under curve,AUC)。[方法]以三峡库区重庆段为研究区,从模型精度评价、滑坡灾害易发性分区图、分区统计3个方面对4种优化模型(RF-GA、SVM-GA、RF-NSGA-II、SVM-NSGA-II)进行对比分析。[结果]NSGA-II较GA优化效果更明显,在模型评价和滑坡易发性分区方面,RF-NSGA-II模型具有更高的预测性能,4项评价值分别为80.91%,81.89%,80.07%,88.60%,证明NSGA-II优化算法的有效性;极低至极高危险区面积占比依次为23.06%,22.46%,22.96%,19.99%,11.53%,验证了RF-NSGA-II模型的可靠性。由RF-NSGA-II模型预测得到的易发性图表明,高和极高易发性区集中在研究区北部,且由东向西呈带状分布。[结论]研究采取的基于多目标选择的RF-NSGA-II模型,为滑坡易发性评价中机器学习模型调优提供新思路。
文摘针对传统固定权重多目标无功优化在应对新型电力系统复杂多变的工况时无法针对实时工况做出最合适的控制决策的问题,提出一种自适应多目标无功优化控制策略。该策略以系统有功网损和并网点电压偏离量的加权最小作为目标函数,目标函数的权重系数根据并网点电压的偏离情况自适应调节。首先,分析海上风电场并网点电压波动与有功、无功输出的关系,建立相应的无功分配模型,并针对风电机组及静止无功发生器(static var ge nerator,SVG)的输入输出特性,建立相应的无功控制模型。此外,考虑海上运行的功率约束、安全运行约束等,采用变惯性权重粒子群优化算法对无功控制策略进行求解。最后,在MATLAB中搭建海上风电场模型进行仿真验证,仿真算例表明:相较于传统固定权重多目标无功优化,自适应多目标无功优化控制策略可以根据电网实时工况,迅速调整各优化目标的优先级,较好地实现有功网损和并网点电压的协调优化。