Background:An estimated 10 to 30 percent of people who become infected with Severe acute respiratory syndrome coronavirus 2 will experience persistent symptoms after recovering from Coronavirus Disease 2019(COVID-19),...Background:An estimated 10 to 30 percent of people who become infected with Severe acute respiratory syndrome coronavirus 2 will experience persistent symptoms after recovering from Coronavirus Disease 2019(COVID-19),which is known as Long COVID.Social media platforms like Facebook and Twitter are the primary sources to gather and examine people’s opinion and sentiments towards various topics.Methods:In this paper,we aimed to examine sentiments,discover key themes and associated topics in Long COVID-related messages posted by Twitter users in the US between March 2022 and April 2022 using sentiment analysis and topic modeling.Results:A total of 117,789 tweets were examined,of which three dominant themes were identified,ranging from symptoms to social and economic impacts,and preventive measures.We also found that more negative sentiments were expressed in the tweets by users toward long-term COVID-19.Conclusions:Our research throws light on dominant themes,topics and sentiments surrounding the ongoing public health crisis.From the insights gained,we discuss the major implications of this study for health practitioners and policymakers.展开更多
Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To ...Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.展开更多
Focusing only on shareholders’financial return is not consistent with the concept of sustainable corporate governance.In contrast to financial performance,corporate social responsibility(CSR)is a non-financial perfor...Focusing only on shareholders’financial return is not consistent with the concept of sustainable corporate governance.In contrast to financial performance,corporate social responsibility(CSR)is a non-financial performance index.Financial reports consist of both financial and non-financial disclosures.These disclosures help investors make decisions.This paper characterizes the interaction between the sentiment analysis of financial reports and CSR scores.The classification accuracy through SVM exceeds 86%.The empirical study shows that the financial report sentiment based on the PESTEL model,Porter’s Five Forces model,and Value Chain(Primary and Support Activities)significantly correlates to the CSR score.展开更多
The sudden arrival of AI(Artificial Intelligence) into people's daily lives all around the world was marked by the introduction of ChatGPT, which was officially released on November 30, 2022. This AI invasion in o...The sudden arrival of AI(Artificial Intelligence) into people's daily lives all around the world was marked by the introduction of ChatGPT, which was officially released on November 30, 2022. This AI invasion in our lives drew the attention of not only tech enthusiasts but also scholars from diverse fields, as its capacity extends across various fields. Consequently, numerous articles and journals have been discussing ChatGPT, making it a headline for several topics. However, it does not reflect most public opinion about the product. Therefore, this paper investigated the public's opinions on ChatGPT through topic modelling, Vader-based sentiment analysis and SWOT analysis. To gather data for this study, 202905 comments from the Reddit platform were collected between December 2022 and December 2023. The findings reveal that the Reddit community engaged in discussions related to ChatGPT, covering a range of topics including comparisons with traditional search engines, the impacts on software development, job market, and education industry, exploring ChatGPT's responses on entertainment and politics, the responses from Dan, the alter ego of ChatGPT, the ethical usage of user data as well as queries related to the AI-generated images. The sentiment analysis indicates that most people hold positive views towards this innovative technology across these several aspects. However, concerns also arise regarding the potential negative impacts associated with this product. The SWOT analysis of these results highlights both the strengths and pain points, market opportunities and threats associated with ChatGPT. This analysis also serves as a foundation for providing recommendations aimed at the product development and policy implementation in this paper.展开更多
With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge am...With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge amount of user-generated contents is of great commerce value and social significance. However traditional text analysis approachesonly focus on the statistical correlation between words, but ignore the sentiment tendency and the temporal properties which may have great effects on topic detection results. This paper proposed a Dynamic Sentiment-Topic(DST) model which can not only detect and track the dynamic topics but also analyze the shift of public's sentiment tendency towards certain topic.Expectation-Maximization algorithm was used in DST model to estimate the latent distribution, and we used Gibbs sampling method to sample new document set and update the hyper parameters and distributions.Experiments are conducted on a real dataset and the results show that DST model outperforms the existing algorithms in terms of topic detection and sentiment accuracy.展开更多
Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel...Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel solutions have been developed to address technical and pedagogical issues.However,these were not the only difficulties that students faced.The implemented solutions involved the operation of the educational process with less regard for students’changing circumstances,which obliged them to study from home.Students should be asked to provide a full list of their concerns.As a result,student reflections,including those from Saudi Arabia,have been analysed to identify obstacles encountered during the COVID-19 pandemic.However,most of the analyses relied on closed-ended questions,which limited student involvement.To delve into students’responses,this study used open-ended questions,a qualitative method(content analysis),a quantitative method(topic modelling),and a sentimental analysis.This study also looked at students’emotional states during and after the COVID-19 pandemic.In terms of determining trends in students’input,the results showed that quantitative and qualitative methods produced similar outcomes.Students had unfavourable sentiments about studying during COVID-19 and positive sentiments about the face-to-face study.Furthermore,topic modelling has revealed that the majority of difficulties are more related to the environment(home)and social life.Students were less accepting of online learning.As a result,it is possible to conclude that face-to-face study still attracts students and provides benefits that online study cannot,such as social interaction and effective eye-to-eye communication.展开更多
Purpose–The purpose of this paper is to analyze topics as alternative features for sentiment analysis in Indonesian tweets.Design/methodology/approach–Given Indonesian tweets,the processes of sentiment analysis star...Purpose–The purpose of this paper is to analyze topics as alternative features for sentiment analysis in Indonesian tweets.Design/methodology/approach–Given Indonesian tweets,the processes of sentiment analysis start by extracting features from the tweets.The features are words or topics.The authors use non-negative matrix factorization to extract the topics and apply a support vector machine to classify the tweets into its sentiment class.Findings–The authors analyze the accuracy using the two-class and three-class sentiment analysis data sets.Both data sets are about sentiments of candidates for Indonesian presidential election.The experiments show that the standard word features give better accuracies than the topics features for the two-class sentiment analysis.Moreover,the topic features can slightly improve the accuracy of the standard word features.The topic features can also improve the accuracy of the standard word features for the three-class sentiment analysis.Originality/value–The standard textual data representation for sentiment analysis using machine learning is bag of word and its extensions mainly created by natural language processing.This paper applies topics as novel features for the machine learning-based sentiment analysis in Indonesian tweets.展开更多
The user-generated social media messages usually contain considerable multimodal content.Such messages are usually short and lack explicit sentiment words.However,we can understand the sentiment associated with such m...The user-generated social media messages usually contain considerable multimodal content.Such messages are usually short and lack explicit sentiment words.However,we can understand the sentiment associated with such messages by analyzing the context,which is essential to improve the sentiment analysis performance.Unfortunately,majority of the existing studies consider the impact of contextual information based on a single data model.In this study,we propose a novel model for performing context-aware user sentiment analysis.This model involves the semantic correlation of different modalities and the effects of tweet context information.Based on our experimental results obtained using the Twitter dataset,our approach is observed to outperform the other existing methods in analysing user sentiment.展开更多
The time cost of ridesharing rental represents a crucial factor influencing users'decisions to rent a car.Researchers have explored this aspect through text analysis and questionnaires.However,the current research...The time cost of ridesharing rental represents a crucial factor influencing users'decisions to rent a car.Researchers have explored this aspect through text analysis and questionnaires.However,the current research faces limitations in terms of data quantity and analysis methods,preventing the extraction of key information.Therefore,there is a need to further optimize the level of public opinion analysis.This study aimed to investigate user perspectives concerning travel time in ridesharing,both pre and post-pandemic,within the Twitter application.Our analysis focused on a dataset from users residing in the USA and India,with considerations for demographic variables such as age and gender.To accomplish our research objectives,we employed Latent Dirichlet Allocation for topic modeling and BERT for sentiment analysis.Our findings revealed significant influences of the pandemic and the user's country of origin on sentiment.Notably,there was a discernible increase in positive sentiment among users from both countries following the pandemic,particularly among older individuals.These findings bear relevance to the ridesharing industry,offering insights that can aid in establishing benchmarks for improving travel time.Such improvements are instrumental in enabling ridesharing companies to effectively compete with other public transportation alternatives.展开更多
文摘Background:An estimated 10 to 30 percent of people who become infected with Severe acute respiratory syndrome coronavirus 2 will experience persistent symptoms after recovering from Coronavirus Disease 2019(COVID-19),which is known as Long COVID.Social media platforms like Facebook and Twitter are the primary sources to gather and examine people’s opinion and sentiments towards various topics.Methods:In this paper,we aimed to examine sentiments,discover key themes and associated topics in Long COVID-related messages posted by Twitter users in the US between March 2022 and April 2022 using sentiment analysis and topic modeling.Results:A total of 117,789 tweets were examined,of which three dominant themes were identified,ranging from symptoms to social and economic impacts,and preventive measures.We also found that more negative sentiments were expressed in the tweets by users toward long-term COVID-19.Conclusions:Our research throws light on dominant themes,topics and sentiments surrounding the ongoing public health crisis.From the insights gained,we discuss the major implications of this study for health practitioners and policymakers.
基金supported by the Teaching Research Major Projects of Anhui Province(2018jyxm1446)the Natural Scientific Project of Anhui Provincial Department of Education(KJ2019A0371)+1 种基金the Anhui Demonstration Experiment Training Center Project(2018sxzx58)the Demonstration Projects for Massive Open Online Course of Anhui Province(2018mooc278)。
文摘Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.
基金National Natural Science Foundation of China(No.71371144,71601119,71771177).
文摘Focusing only on shareholders’financial return is not consistent with the concept of sustainable corporate governance.In contrast to financial performance,corporate social responsibility(CSR)is a non-financial performance index.Financial reports consist of both financial and non-financial disclosures.These disclosures help investors make decisions.This paper characterizes the interaction between the sentiment analysis of financial reports and CSR scores.The classification accuracy through SVM exceeds 86%.The empirical study shows that the financial report sentiment based on the PESTEL model,Porter’s Five Forces model,and Value Chain(Primary and Support Activities)significantly correlates to the CSR score.
文摘The sudden arrival of AI(Artificial Intelligence) into people's daily lives all around the world was marked by the introduction of ChatGPT, which was officially released on November 30, 2022. This AI invasion in our lives drew the attention of not only tech enthusiasts but also scholars from diverse fields, as its capacity extends across various fields. Consequently, numerous articles and journals have been discussing ChatGPT, making it a headline for several topics. However, it does not reflect most public opinion about the product. Therefore, this paper investigated the public's opinions on ChatGPT through topic modelling, Vader-based sentiment analysis and SWOT analysis. To gather data for this study, 202905 comments from the Reddit platform were collected between December 2022 and December 2023. The findings reveal that the Reddit community engaged in discussions related to ChatGPT, covering a range of topics including comparisons with traditional search engines, the impacts on software development, job market, and education industry, exploring ChatGPT's responses on entertainment and politics, the responses from Dan, the alter ego of ChatGPT, the ethical usage of user data as well as queries related to the AI-generated images. The sentiment analysis indicates that most people hold positive views towards this innovative technology across these several aspects. However, concerns also arise regarding the potential negative impacts associated with this product. The SWOT analysis of these results highlights both the strengths and pain points, market opportunities and threats associated with ChatGPT. This analysis also serves as a foundation for providing recommendations aimed at the product development and policy implementation in this paper.
基金supported by National Natural Science Foundation of China with granted No.61402045,61370197the Specialized Research Fund for the Doctoral Program of Higher Education with granted No.20130005110011the National High Technology Research and Development Program with granted No.2013AA013301
文摘With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge amount of user-generated contents is of great commerce value and social significance. However traditional text analysis approachesonly focus on the statistical correlation between words, but ignore the sentiment tendency and the temporal properties which may have great effects on topic detection results. This paper proposed a Dynamic Sentiment-Topic(DST) model which can not only detect and track the dynamic topics but also analyze the shift of public's sentiment tendency towards certain topic.Expectation-Maximization algorithm was used in DST model to estimate the latent distribution, and we used Gibbs sampling method to sample new document set and update the hyper parameters and distributions.Experiments are conducted on a real dataset and the results show that DST model outperforms the existing algorithms in terms of topic detection and sentiment accuracy.
文摘Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel solutions have been developed to address technical and pedagogical issues.However,these were not the only difficulties that students faced.The implemented solutions involved the operation of the educational process with less regard for students’changing circumstances,which obliged them to study from home.Students should be asked to provide a full list of their concerns.As a result,student reflections,including those from Saudi Arabia,have been analysed to identify obstacles encountered during the COVID-19 pandemic.However,most of the analyses relied on closed-ended questions,which limited student involvement.To delve into students’responses,this study used open-ended questions,a qualitative method(content analysis),a quantitative method(topic modelling),and a sentimental analysis.This study also looked at students’emotional states during and after the COVID-19 pandemic.In terms of determining trends in students’input,the results showed that quantitative and qualitative methods produced similar outcomes.Students had unfavourable sentiments about studying during COVID-19 and positive sentiments about the face-to-face study.Furthermore,topic modelling has revealed that the majority of difficulties are more related to the environment(home)and social life.Students were less accepting of online learning.As a result,it is possible to conclude that face-to-face study still attracts students and provides benefits that online study cannot,such as social interaction and effective eye-to-eye communication.
文摘Purpose–The purpose of this paper is to analyze topics as alternative features for sentiment analysis in Indonesian tweets.Design/methodology/approach–Given Indonesian tweets,the processes of sentiment analysis start by extracting features from the tweets.The features are words or topics.The authors use non-negative matrix factorization to extract the topics and apply a support vector machine to classify the tweets into its sentiment class.Findings–The authors analyze the accuracy using the two-class and three-class sentiment analysis data sets.Both data sets are about sentiments of candidates for Indonesian presidential election.The experiments show that the standard word features give better accuracies than the topics features for the two-class sentiment analysis.Moreover,the topic features can slightly improve the accuracy of the standard word features.The topic features can also improve the accuracy of the standard word features for the three-class sentiment analysis.Originality/value–The standard textual data representation for sentiment analysis using machine learning is bag of word and its extensions mainly created by natural language processing.This paper applies topics as novel features for the machine learning-based sentiment analysis in Indonesian tweets.
基金supported by the National Key R&D Program of China(No.2017YFB1003000)the National Natural Science Foundation of China(Nos.61972087and 61772133)+4 种基金the National Social Science Foundation of China(No.19@ZH014)Jiangsu Provincial Key Project(No.BE2018706)the Natural Science Foundation of Jiangsu Province(No.SBK2019022870)Jiangsu Provincial Key Laboratory of Network and Information Security(No.BM2003201)Key Laboratory of Computer Network and Information Integration of Ministry of Education of China(No.93K-9).
文摘The user-generated social media messages usually contain considerable multimodal content.Such messages are usually short and lack explicit sentiment words.However,we can understand the sentiment associated with such messages by analyzing the context,which is essential to improve the sentiment analysis performance.Unfortunately,majority of the existing studies consider the impact of contextual information based on a single data model.In this study,we propose a novel model for performing context-aware user sentiment analysis.This model involves the semantic correlation of different modalities and the effects of tweet context information.Based on our experimental results obtained using the Twitter dataset,our approach is observed to outperform the other existing methods in analysing user sentiment.
基金supported by the Chinese National Natural Science Foundation(52172348)the Postdoctoral Research Foundation of China.
文摘The time cost of ridesharing rental represents a crucial factor influencing users'decisions to rent a car.Researchers have explored this aspect through text analysis and questionnaires.However,the current research faces limitations in terms of data quantity and analysis methods,preventing the extraction of key information.Therefore,there is a need to further optimize the level of public opinion analysis.This study aimed to investigate user perspectives concerning travel time in ridesharing,both pre and post-pandemic,within the Twitter application.Our analysis focused on a dataset from users residing in the USA and India,with considerations for demographic variables such as age and gender.To accomplish our research objectives,we employed Latent Dirichlet Allocation for topic modeling and BERT for sentiment analysis.Our findings revealed significant influences of the pandemic and the user's country of origin on sentiment.Notably,there was a discernible increase in positive sentiment among users from both countries following the pandemic,particularly among older individuals.These findings bear relevance to the ridesharing industry,offering insights that can aid in establishing benchmarks for improving travel time.Such improvements are instrumental in enabling ridesharing companies to effectively compete with other public transportation alternatives.