Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a...Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.展开更多
The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland an...The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration.展开更多
This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades...This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades and pavements and foliage such as grass and trees. This involves using both unmanned aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and generate a Digital Surface Model (DSM). For the study area chosen for this paper, 400 Orthoimages with a spatial resolution of 7 cm each were used to build the Orthoimages and DSM, which were georeferenced using well distributed network of ground control points (GCPs) of 12 reference points (RMSE = 8 cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency receivers, they were able to provide absolute block orientation which had a similar accuracy range if the data had been collected by traditional indirect sensor orientation. Traditional indirect sensor orientation involves the GNSS receiver in the UAV receiving a differential signal from the base station through a communication link. This allows for the precise position of the UAV to be established, as the RTK uses correction, allowing position, velocity, altitude and heading to tracked, as well as the measurement of raw sensor data. By assessing the results of the confusion matrices, it can be seen that the overall accuracy of the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 and the data that had poor classification accuracy included shade, parking lots and concrete pavements. These had a producer accuracy (precision) of 81%, 74% and 74% respectively, while lakes and solar panels each scored 100% in comparison, meaning that they had good classification accuracy.展开更多
Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland ...Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland changes to appropriately manage and protect wetland resources; however, it is quite difficult to accurately extract such information from remote sensing images due to spectral confusion and arduous field verification. In this study, we identified different wetland types in the Damqu River Basin located in the Yangze River source region from Landsat remote sensing data using the object-based method. In order to ensure the interpretation accuracy of wetland, a digital elevation model (DEM) and its derived data (slope, aspect), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Kauth-Thomas transformation were considered as the components of the spectral characteristics of wetland types. The spectral characteristics, texture features and spatial structure characteristics of each wetland type were comprehensively analyzed based on the success of image segmentation. The extraction rules for each wetland type were established by determining the thresholds of the spatial, texture and spectral attributes of typical parameter layers according to their histogram statistics. The classification accuracy was assessed using error matrixes and field survey verification data. According to the accuracy assessment, the total accuracy of image classification was 89%.展开更多
Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities.With their enormous input of fertilizers and pesticides,greenhouses have...Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities.With their enormous input of fertilizers and pesticides,greenhouses have considerably changed the local soil quality and environmental risk factors.The ability to obtain timely and accurate information regarding the spatial distribution of greenhouses could make an important contribution to local agricultural management and soil protection.This paper attempts to present a practical framework for extracting suburban greenhouses,integrating remote sensing data from Landsat-8 and object-oriented classification.Inheritance classification was implemented,and various properties,including texture and neighborhood features in addition to spectral information,were investigated through the popular random forest technique for feature selection prior to SVM classification to improve the mapping accuracy.The results demonstrated that object-based classification incorporating non-spectral features yielded a significant improvement compared with the classification results obtained using only the spectral information in traditional per-pixel classification.Both the producer’s and user’s accuracy were higher than 85%for greenhouse identification.Although it remained a challenge to completely distinguish greenhouses from sparse plants,the final greenhouse map indicated that the proposed object-based classification scheme,providing multiple feature selections and multi-scale analysis,yielded worthwhile information when applied to a continuous series of the freely available Landsat-8 imagery data.展开更多
This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algori...This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively.展开更多
Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remot...Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great ...Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.展开更多
Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classificat...Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.展开更多
An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovat...An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovation of the presented method can be summarized in the following two main points:①estimating polarimetric parameters(H-A-Alpha decomposition)through the optical image as a driver;②a multi-resolution segmentation based on the optical image only is deployed to refine classification results.The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California.The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database(NLCD).A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6%over regions with rich texture.展开更多
With the deterioration of the environment,it is imperative to protect coastal wetlands.Using multi-source remote sensing data and object-based hierarchical classification to classify coastal wetlands is an effective m...With the deterioration of the environment,it is imperative to protect coastal wetlands.Using multi-source remote sensing data and object-based hierarchical classification to classify coastal wetlands is an effective method.The object-based hierarchical classification using remote sensing indices(OBH-RSI)for coastal wetland is proposed to achieve fine classification of coastal wetland.First,the original categories are divided into four groups according to the category characteristics.Second,the training and test maps of each group are extracted according to the remote sensing indices.Third,four groups are passed through the classifier in order.Finally,the results of the four groups are combined to get the final classification result map.The experimental results demonstrate that the overall accuracy,average accuracy and kappa coefficient of the proposed strategy are over 94%using the Yellow River Delta dataset.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood...Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.展开更多
When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to ...When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles.展开更多
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p...The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.展开更多
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the...In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.展开更多
Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to...Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.展开更多
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me...While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.展开更多
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the CAS Earth Big Data Science Project(No.XDA19060303)the Innovation Project of the State Key Laboratory of Resources and Environmental Information System(No.O88RAA01YA)
文摘Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.
文摘The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration.
文摘This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades and pavements and foliage such as grass and trees. This involves using both unmanned aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and generate a Digital Surface Model (DSM). For the study area chosen for this paper, 400 Orthoimages with a spatial resolution of 7 cm each were used to build the Orthoimages and DSM, which were georeferenced using well distributed network of ground control points (GCPs) of 12 reference points (RMSE = 8 cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency receivers, they were able to provide absolute block orientation which had a similar accuracy range if the data had been collected by traditional indirect sensor orientation. Traditional indirect sensor orientation involves the GNSS receiver in the UAV receiving a differential signal from the base station through a communication link. This allows for the precise position of the UAV to be established, as the RTK uses correction, allowing position, velocity, altitude and heading to tracked, as well as the measurement of raw sensor data. By assessing the results of the confusion matrices, it can be seen that the overall accuracy of the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 and the data that had poor classification accuracy included shade, parking lots and concrete pavements. These had a producer accuracy (precision) of 81%, 74% and 74% respectively, while lakes and solar panels each scored 100% in comparison, meaning that they had good classification accuracy.
基金funded by National Natural Science Foundation of China (Grant No.40901057)National Basic Research Program of China (Grant No.2010CB951704)
文摘Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland changes to appropriately manage and protect wetland resources; however, it is quite difficult to accurately extract such information from remote sensing images due to spectral confusion and arduous field verification. In this study, we identified different wetland types in the Damqu River Basin located in the Yangze River source region from Landsat remote sensing data using the object-based method. In order to ensure the interpretation accuracy of wetland, a digital elevation model (DEM) and its derived data (slope, aspect), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Kauth-Thomas transformation were considered as the components of the spectral characteristics of wetland types. The spectral characteristics, texture features and spatial structure characteristics of each wetland type were comprehensively analyzed based on the success of image segmentation. The extraction rules for each wetland type were established by determining the thresholds of the spatial, texture and spectral attributes of typical parameter layers according to their histogram statistics. The classification accuracy was assessed using error matrixes and field survey verification data. According to the accuracy assessment, the total accuracy of image classification was 89%.
基金The authors are grateful for the support of the National Ecological Survey and Evaluation(2000-2010)under the auspices of the Remote Sensing Program of the Chinese Ministry of Environmental Protection(No.STSN-05-11).
文摘Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities.With their enormous input of fertilizers and pesticides,greenhouses have considerably changed the local soil quality and environmental risk factors.The ability to obtain timely and accurate information regarding the spatial distribution of greenhouses could make an important contribution to local agricultural management and soil protection.This paper attempts to present a practical framework for extracting suburban greenhouses,integrating remote sensing data from Landsat-8 and object-oriented classification.Inheritance classification was implemented,and various properties,including texture and neighborhood features in addition to spectral information,were investigated through the popular random forest technique for feature selection prior to SVM classification to improve the mapping accuracy.The results demonstrated that object-based classification incorporating non-spectral features yielded a significant improvement compared with the classification results obtained using only the spectral information in traditional per-pixel classification.Both the producer’s and user’s accuracy were higher than 85%for greenhouse identification.Although it remained a challenge to completely distinguish greenhouses from sparse plants,the final greenhouse map indicated that the proposed object-based classification scheme,providing multiple feature selections and multi-scale analysis,yielded worthwhile information when applied to a continuous series of the freely available Landsat-8 imagery data.
文摘This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively.
文摘Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070503)the National Key Research and Development Program of China(2021YFD1500100)+2 种基金the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University (20R04)Land Observation Satellite Supporting Platform of National Civil Space Infrastructure Project(CASPLOS-CCSI)a PhD studentship ‘‘Deep Learning in massive area,multi-scale resolution remotely sensed imagery”(EAA7369),sponsored by Lancaster University and Ordnance Survey (the national mapping agency of Great Britain)。
文摘Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach is the first known attempt to explore simultaneously the joint information from image time-series with the unique information from single-date images for crop classification using a deep learning framework. The TS-OCNN, therefore, represents a new approach for agricultural landscape classification from multi-temporal FSR imagery. Besides, it is readily generalizable to other landscapes(e.g., forest landscapes), with a wide application prospect.
基金financially supported by grant from National Natural Science Foundation of China(No.31300533)
文摘Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.
基金The National Key Research and Development Program of China(No.2018YFC0407900)The National Natural Science Foundation of China(No.41774003)+2 种基金The Natural Science Foundation of Jiangsu Province(No.BK20171432)The Fundamental Research Funds for the Central Universities(No.2018B177142019B60714)。
文摘An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovation of the presented method can be summarized in the following two main points:①estimating polarimetric parameters(H-A-Alpha decomposition)through the optical image as a driver;②a multi-resolution segmentation based on the optical image only is deployed to refine classification results.The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California.The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database(NLCD).A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6%over regions with rich texture.
基金supported by the Beijing Natural Science Foundation(No.JQ20021)the National Natural Science Foundation of China(Nos.61922013,61421001 and U1833203)the Remote Sensing Monitoring Project of Geographical Elements in Shandong Yellow River Delta National Nature Reserve。
文摘With the deterioration of the environment,it is imperative to protect coastal wetlands.Using multi-source remote sensing data and object-based hierarchical classification to classify coastal wetlands is an effective method.The object-based hierarchical classification using remote sensing indices(OBH-RSI)for coastal wetland is proposed to achieve fine classification of coastal wetland.First,the original categories are divided into four groups according to the category characteristics.Second,the training and test maps of each group are extracted according to the remote sensing indices.Third,four groups are passed through the classifier in order.Finally,the results of the four groups are combined to get the final classification result map.The experimental results demonstrate that the overall accuracy,average accuracy and kappa coefficient of the proposed strategy are over 94%using the Yellow River Delta dataset.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金This study was supported by the Fundamental Research Funds for the Central Universities(No.2572023DJ02).
文摘Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.
基金supported by the Yunnan Major Scientific and Technological Projects(Grant No.202302AD080001)the National Natural Science Foundation,China(No.52065033).
文摘When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles.
基金financially supported by the National Key Research and Development Program of China(2022YFB3706800,2020YFB1710100)the National Natural Science Foundation of China(51821001,52090042,52074183)。
文摘The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.
文摘In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.
文摘Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.
基金This research was funded by National Natural Science Foundation of China under Grant No.61806171Sichuan University of Science&Engineering Talent Project under Grant No.2021RC15+2 种基金Open Fund Project of Key Laboratory for Non-Destructive Testing and Engineering Computer of Sichuan Province Universities on Bridge Inspection and Engineering under Grant No.2022QYJ06Sichuan University of Science&Engineering Graduate Student Innovation Fund under Grant No.Y2023115The Scientific Research and Innovation Team Program of Sichuan University of Science and Technology under Grant No.SUSE652A006.
文摘While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.