Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi...BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit...This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science.展开更多
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air...To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.展开更多
A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality ar...A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K展开更多
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian ne...Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.展开更多
BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC...BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC as well as to identify the role of adjuvant therapy.METHODS Patients with curatively resected advanced gallbladder adenocarcinoma(T3 and T4)were selected from the Surveillance,Epidemiology,and End Results database between 2004 and 2015.A survival prediction model based on Bayesian network(BN)was constructed using the tree-augmented na?ve Bayes algorithm,and composite importance measures were applied to rank the influence of factors on survival.The dataset was divided into a training dataset to establish the BN model and a testing dataset to test the model randomly at a ratio of 7:3.The confusion matrix and receiver operating characteristic curve were used to evaluate the model accuracy.RESULTS A total of 818 patients met the inclusion criteria.The median survival time was 9.0 mo.The accuracy of BN model was 69.67%,and the area under the curve value for the testing dataset was 77.72%.Adjuvant radiation,adjuvant chemotherapy(CTx),T stage,scope of regional lymph node surgery,and radiation sequence were ranked as the top five prognostic factors.A survival prediction table was established based on T stage,N stage,adjuvant radiotherapy(XRT),and CTx.The distribution of the survival time(>9.0 mo)was affected by different treatments with the order of adjuvant chemoradiotherapy(cXRT)>adjuvant radiation>adjuvant chemotherapy>surgery alone.For patients with node-positive disease,the larger benefit predicted by the model is adjuvant chemoradiotherapy.The survival analysis showed that there was a significant difference among the different adjuvant therapy groups(log rank,surgery alone vs CTx,P<0.001;surgery alone vs XRT,P=0.014;surgery alone vs cXRT,P<0.001).CONCLUSION The BN-based survival prediction model can be used as a decision-making support tool for advanced GBC patients.Adjuvant chemoradiotherapy is expected to improve the survival significantly for patients with node-positive disease.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me...New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.展开更多
The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approac...The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.展开更多
Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascul...Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascular cognitive impairment.Data sources: The initial literature search was performed with PubMed, EMBASE, the Cochrane Methodology Register, the Cochrane Central Register of Controlled Trials, and Cumulative Index to Nursing & Allied Health(CINAHL) from inception to January 2018 for studies regarding donepezil, galantamine, rivastigmine, and memantine for treatment of vascular cognitive impairment.Data selection: Randomized controlled trials on donepezil, galantamine, rivastigmine, and memantine as monotherapy in the treatment of vascular cognitive impairment were included. A Bayesian network meta-analysis was conducted. Outcome measures: Efficacy was assessed by changes in scores of the Alzheimer's Disease Assessment Scale, cognitive subscale, Mini-Mental State Examination, Neuropsychiatric Inventory scores and Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input, Activities of Daily Living, the Clinical Dementia Rating scale. Safety was evaluated by mortality, total adverse events(TAEs), serious adverse events(SAEs), nausea, vomiting. diarrhea, or cerebrovascular accidents(CVAs). Results: After screening 1717 citations, 12 randomized controlled trials were included. Donepezil and rivastigmine(mean difference(e) = –0.77, 95% confidence interval(CI): 0.25–1.32; MD = 1.05, 95% CI: 0.18–1.79) were significantly more effective than placebo in reducing Mini-Mental State Examination scores. Donepezil, galantamine, and memantine(MD = –1.30, 95% CI: –2.27 to –0.42; MD = –1.67, 95% CI: –3.36 to –0.06; MD = –2.27, 95% CI: –3.91 to –0.53) showed superior benefits on the Alzheimer's Disease Assessment Scale–cognitive scores compared with placebo. Memantine(MD = 2.71, 95% CI: 1.05–7.29) improved global status(Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input) more than the placebo. Safety results revealed that donepezil 10 mg(odds ratio(OR) = 3.04, 95% CI: 1.86–5.41) contributed to higer risk of adverse events than placebo. Galantamine(OR = 5.64, 95% CI: 1.31–26.71) increased the risk of nausea. Rivastigmine(OR = 16.80, 95% CI: 1.78–319.26) increased the risk of vomiting. No agents displayed a significant risk of serious adverse events, mortality, cerebrovascular accidents, or diarrhea.Conclusion: We found significant efficacy of donepezil, galantamine, and memantine on cognition. Memantine can provide significant efficacy in global status. They are all safe and well tolerated.展开更多
To analyze and evaluate the testability design of equipment, a testability analysis method based on Bayesian network inference model is proposed in the paper. The model can adequately apply testability information and...To analyze and evaluate the testability design of equipment, a testability analysis method based on Bayesian network inference model is proposed in the paper. The model can adequately apply testability information and many uncertainty information of design and maintenance process, so it can analyze testability by and large from Bayesian inference. The detailed procedure to analyze and evaluate testability for equipments by Bayesian network is given in the paper. Its modeling process is simple, its formulation is visual, and the analysis results are more reliable than others. Examples prove that the analysis method based on Bayesian network inference can be applied to testability analysis and evaluation for complex equipments.展开更多
When the training data are insufficient, especially when only a small sample size of data is available, domain knowledge will be taken into the process of learning parameters to improve the performance of the Bayesian...When the training data are insufficient, especially when only a small sample size of data is available, domain knowledge will be taken into the process of learning parameters to improve the performance of the Bayesian networks. In this paper, a new monotonic constraint model is proposed to represent a type of common domain knowledge. And then, the monotonic constraint estimation algorithm is proposed to learn the parameters with the monotonic constraint model. In order to demonstrate the superiority of the proposed algorithm, series of experiments are carried out. The experiment results show that the proposed algorithm is able to obtain more accurate parameters compared to some existing algorithms while the complexity is not the highest.展开更多
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple...To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金Supported by the Chinese Nursing Association,No.ZHKY202111Scientific Research Program of School of Nursing,Chongqing Medical University,No.20230307Chongqing Science and Health Joint Medical Research Program,No.2024MSXM063.
文摘BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
文摘This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science.
文摘To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.
基金The National High Technology Research and Development Program of China (863Program) (No.2003AA1Z2130)the Scienceand Technology Project of Zhejiang Province(No.2005C11001-02)
文摘A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K
基金supported by the National Natural Science Foundation of China(Grant No.41374118)the Research Fund for the Higher Education Doctoral Program of China(Grant No.20120162110015)+3 种基金the China Postdoctoral Science Foundation(Grant No.2015M580700)the Hunan Provincial Natural Science Foundation,the China(Grant No.2016JJ3086)the Hunan Provincial Science and Technology Program,China(Grant No.2015JC3067)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.15B138)
文摘Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
基金Supported by the National Natural Science Foundation of China,No.81572420 and No.71871181the Key Research and Development Program of Shaanxi Province,No.2017ZDXM-SF-055the Multicenter Clinical Research Project of School of Medicine,Shanghai Jiaotong University,No.DLY201807
文摘BACKGROUND The factors affecting the prognosis and role of adjuvant therapy in advanced gallbladder carcinoma(GBC)after curative resection remain unclear.AIM To provide a survival prediction model to patients with GBC as well as to identify the role of adjuvant therapy.METHODS Patients with curatively resected advanced gallbladder adenocarcinoma(T3 and T4)were selected from the Surveillance,Epidemiology,and End Results database between 2004 and 2015.A survival prediction model based on Bayesian network(BN)was constructed using the tree-augmented na?ve Bayes algorithm,and composite importance measures were applied to rank the influence of factors on survival.The dataset was divided into a training dataset to establish the BN model and a testing dataset to test the model randomly at a ratio of 7:3.The confusion matrix and receiver operating characteristic curve were used to evaluate the model accuracy.RESULTS A total of 818 patients met the inclusion criteria.The median survival time was 9.0 mo.The accuracy of BN model was 69.67%,and the area under the curve value for the testing dataset was 77.72%.Adjuvant radiation,adjuvant chemotherapy(CTx),T stage,scope of regional lymph node surgery,and radiation sequence were ranked as the top five prognostic factors.A survival prediction table was established based on T stage,N stage,adjuvant radiotherapy(XRT),and CTx.The distribution of the survival time(>9.0 mo)was affected by different treatments with the order of adjuvant chemoradiotherapy(cXRT)>adjuvant radiation>adjuvant chemotherapy>surgery alone.For patients with node-positive disease,the larger benefit predicted by the model is adjuvant chemoradiotherapy.The survival analysis showed that there was a significant difference among the different adjuvant therapy groups(log rank,surgery alone vs CTx,P<0.001;surgery alone vs XRT,P=0.014;surgery alone vs cXRT,P<0.001).CONCLUSION The BN-based survival prediction model can be used as a decision-making support tool for advanced GBC patients.Adjuvant chemoradiotherapy is expected to improve the survival significantly for patients with node-positive disease.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
基金supported by the Research Grants Council of the Hong Kong SAR Government(Grant Nos.16202716 and C6012-15G)
文摘New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.
基金supported by the National Natural Science Foundation of China (60874068)
文摘The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.
基金supported by the Natural Science Foundation of Liaoning Province of China,No.20170541036(to HYL)
文摘Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascular cognitive impairment.Data sources: The initial literature search was performed with PubMed, EMBASE, the Cochrane Methodology Register, the Cochrane Central Register of Controlled Trials, and Cumulative Index to Nursing & Allied Health(CINAHL) from inception to January 2018 for studies regarding donepezil, galantamine, rivastigmine, and memantine for treatment of vascular cognitive impairment.Data selection: Randomized controlled trials on donepezil, galantamine, rivastigmine, and memantine as monotherapy in the treatment of vascular cognitive impairment were included. A Bayesian network meta-analysis was conducted. Outcome measures: Efficacy was assessed by changes in scores of the Alzheimer's Disease Assessment Scale, cognitive subscale, Mini-Mental State Examination, Neuropsychiatric Inventory scores and Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input, Activities of Daily Living, the Clinical Dementia Rating scale. Safety was evaluated by mortality, total adverse events(TAEs), serious adverse events(SAEs), nausea, vomiting. diarrhea, or cerebrovascular accidents(CVAs). Results: After screening 1717 citations, 12 randomized controlled trials were included. Donepezil and rivastigmine(mean difference(e) = –0.77, 95% confidence interval(CI): 0.25–1.32; MD = 1.05, 95% CI: 0.18–1.79) were significantly more effective than placebo in reducing Mini-Mental State Examination scores. Donepezil, galantamine, and memantine(MD = –1.30, 95% CI: –2.27 to –0.42; MD = –1.67, 95% CI: –3.36 to –0.06; MD = –2.27, 95% CI: –3.91 to –0.53) showed superior benefits on the Alzheimer's Disease Assessment Scale–cognitive scores compared with placebo. Memantine(MD = 2.71, 95% CI: 1.05–7.29) improved global status(Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input) more than the placebo. Safety results revealed that donepezil 10 mg(odds ratio(OR) = 3.04, 95% CI: 1.86–5.41) contributed to higer risk of adverse events than placebo. Galantamine(OR = 5.64, 95% CI: 1.31–26.71) increased the risk of nausea. Rivastigmine(OR = 16.80, 95% CI: 1.78–319.26) increased the risk of vomiting. No agents displayed a significant risk of serious adverse events, mortality, cerebrovascular accidents, or diarrhea.Conclusion: We found significant efficacy of donepezil, galantamine, and memantine on cognition. Memantine can provide significant efficacy in global status. They are all safe and well tolerated.
基金supported by the National Natural Science Foundation of China(60771063).
文摘To analyze and evaluate the testability design of equipment, a testability analysis method based on Bayesian network inference model is proposed in the paper. The model can adequately apply testability information and many uncertainty information of design and maintenance process, so it can analyze testability by and large from Bayesian inference. The detailed procedure to analyze and evaluate testability for equipments by Bayesian network is given in the paper. Its modeling process is simple, its formulation is visual, and the analysis results are more reliable than others. Examples prove that the analysis method based on Bayesian network inference can be applied to testability analysis and evaluation for complex equipments.
基金supported by the National Natural Science Foundation of China(6130513361573285)the Fundamental Research Funds for the Central Universities(3102016CG002)
文摘When the training data are insufficient, especially when only a small sample size of data is available, domain knowledge will be taken into the process of learning parameters to improve the performance of the Bayesian networks. In this paper, a new monotonic constraint model is proposed to represent a type of common domain knowledge. And then, the monotonic constraint estimation algorithm is proposed to learn the parameters with the monotonic constraint model. In order to demonstrate the superiority of the proposed algorithm, series of experiments are carried out. The experiment results show that the proposed algorithm is able to obtain more accurate parameters compared to some existing algorithms while the complexity is not the highest.
基金supported by the National Natural Science Fundation of China (60974082 60874085)+2 种基金the Fundamental Research Funds for the Central Universities (K50510700004)the Technology Plan Projects of Guangdong Province (20110401)the Team Project of Hanshan Normal University (LT201001)
文摘To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.