Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control l...This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control logic based on an on-chip delay-locked loop(DLL).The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter(CDAC)than the synchronous and asynchronous SAR ADC.Therefore,the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent.In addition,the fore-ground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter(FIR-BPF)based least-mean-square(LMS)algorithm in an off-chip FPGA(field programmable gate array).Fabricated in 40-nm CMOS process,the proto-type ADC achieves 94.02-dB spurious-free dynamic range(SFDR),and 75.98-dB signal-to-noise-and-distortion ratio(SNDR)for a 2.88-MHz input under 18-MSPS sampling rate.展开更多
Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore...Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.展开更多
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu...Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.展开更多
The development of the object-oriented paradigm has suffered from the lackof any generally accepted formal foundations for its semantic definition. Toaddress this issue, we propose the development of the logic-based s...The development of the object-oriented paradigm has suffered from the lackof any generally accepted formal foundations for its semantic definition. Toaddress this issue, we propose the development of the logic-based semantics ofthe object-oriented paradigm. By combining the logic- with the object-orientedparadigm of computing first, this paper discusses formally the semantics of aquite purely object-oriented logic paradigm in terms of proof theory modeltheory and Aspoint theory from the viewpoint of logic. The operational anddeclarative semantics is given. And then the correspondence between soundnessand completeness has been discussed formally.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
Fair exchange protocols play a critical role in enabling two distrustful entities to conduct electronic data exchanges in a fair and secure manner.These protocols are widely used in electronic payment systems and elec...Fair exchange protocols play a critical role in enabling two distrustful entities to conduct electronic data exchanges in a fair and secure manner.These protocols are widely used in electronic payment systems and electronic contract signing,ensuring the reliability and security of network transactions.In order to address the limitations of current research methods and enhance the analytical capabilities for fair exchange protocols,this paper proposes a formal model for analyzing such protocols.The proposed model begins with a thorough analysis of fair exchange protocols,followed by the formal definition of fairness.This definition accurately captures the inherent requirements of fair exchange protocols.Building upon event logic,the model incorporates the time factor into predicates and introduces knowledge set axioms.This enhancement empowers the improved logic to effectively describe the state and knowledge of protocol participants at different time points,facilitating reasoning about their acquired knowledge.To maximize the intruder’s capabilities,channel errors are translated into the behaviors of the intruder.The participants are further categorized into honest participants and malicious participants,enabling a comprehensive evaluation of the intruder’s potential impact.By employing a typical fair exchange protocol as an illustrative example,this paper demonstrates the detailed steps of utilizing the proposed model for protocol analysis.The entire process of protocol execution under attack scenarios is presented,shedding light on the underlying reasons for the attacks and proposing corresponding countermeasures.The developedmodel enhances the ability to reason about and evaluate the security properties of fair exchange protocols,thereby contributing to the advancement of secure network transactions.展开更多
This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bis...This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.展开更多
logical testing model and resource lifecycle information,generate test cases and complete parameters,and alleviate inconsistency issues through parameter inference.Once again,we propose a method of analyzing test resu...logical testing model and resource lifecycle information,generate test cases and complete parameters,and alleviate inconsistency issues through parameter inference.Once again,we propose a method of analyzing test results using joint state codes and call stack information,which compensates for the shortcomings of traditional analysis methods.We will apply our method to testing REST services,including OpenStack,an open source cloud operating platform for experimental evaluation.We have found a series of inconsistencies,known vulnerabilities,and new unknown logical defects.展开更多
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro...Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.展开更多
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin ...Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.展开更多
Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
The research purpose of this dissertation is threefold: to innovate artificial intelligence methods, to create the intersection of artificial intelligence and biological research, and to innovate human methodology. Th...The research purpose of this dissertation is threefold: to innovate artificial intelligence methods, to create the intersection of artificial intelligence and biological research, and to innovate human methodology. The work I have done in my research includes: improving logical structure and logical engineering, using my theory to study the innovation of the development path of artificial intelligence, using my theory to create biomimetic logic, a new intersection of artificial intelligence and biological research, and exploring the innovation of human methodology through the previous two works. The results of the research are as follows: 1) Introduction to bionic logic, incorporating simulations of people, society, and life as core principles. 2) Definition of the logical structure as the primary focus of research, with logic mechanics serving as foundational research principles. 3) Examination of the logical structure’s environment through logical fields and networks. 4) Study of logical structure communication via logical networks and main lines. 5) Proposal of data logic. 6) Investigation into the logic of logical structures, employing structural diagrams of logical equations. 7) Development of a theory of life activity within logical structures, encompassing information reasoning, its corresponding control structure, and structural reasoning. 8) Introduction of the lifecycle theory for logical structures and examination of the clock equation. 9) Exploration of logical structure intelligence. 10) Study of logical structures in mathematical forms. 11) Introduction of logic engineering. 12) Examination of artificial intelligence’s significance. 13) Investigation into the significance of human methodology.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection method...Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.展开更多
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi...In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.展开更多
This article presents a fuzzy logic-based approach to coordinate the control devices of the power system, such as Power System Stabilizers (PSS) and Static Synchronous Compensators (STATCOM), to damp power oscillation...This article presents a fuzzy logic-based approach to coordinate the control devices of the power system, such as Power System Stabilizers (PSS) and Static Synchronous Compensators (STATCOM), to damp power oscillations caused by dynamic disturbances. At first, we used the Lyapunov method to study the dynamic stability of the power grid in the Republic of Congo. This method allowed us to analyze the eigenvalues of the state variable matrix and highlight the eigenvalues in the complex plane. Secondly, we proposed a fuzzy logic-based controller to account for uncertainties existing near the thresholds. The inputs to this controller are the generator speed and generator rotor angle. We demonstrated the effectiveness and feasibility of this fuzzy control by applying it to the power grid of the Republic of Congo, with three power stabilizers and two STATCOMs. .展开更多
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by Qingdao Hi-image Technologies Co., Ltdin part by the NSFC of China under Grant 62174149, 61974118, 62004156the National Key R&D Program of China under Grant 2022YFC2404902
文摘This paper presents a 16-bit,18-MSPS(million samples per second)flash-assisted successive-approximation-register(SAR)analog-to-digital converter(ADC)utilizing hybrid synchronous and asynchronous(HYSAS)timing control logic based on an on-chip delay-locked loop(DLL).The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter(CDAC)than the synchronous and asynchronous SAR ADC.Therefore,the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent.In addition,the fore-ground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter(FIR-BPF)based least-mean-square(LMS)algorithm in an off-chip FPGA(field programmable gate array).Fabricated in 40-nm CMOS process,the proto-type ADC achieves 94.02-dB spurious-free dynamic range(SFDR),and 75.98-dB signal-to-noise-and-distortion ratio(SNDR)for a 2.88-MHz input under 18-MSPS sampling rate.
基金supported by Guangdong Hardware and System Teaching and Research Office(Quality Engineeringproject No.HITSZERP22002)+2 种基金Guangdong Province Education Science Planning Project(Higher Education Project,Project No.2022GXJK431)Harbin Institute of Technology(Shenzhen)Course Ideological and Political Project(Project No.HITSZIP21003)Construction Project of Teachers College of Harbin Institute of Technology(Shenzhen)(Project No.HITSZSFXY202201)。
文摘Most current object-oriented programming courses offered by domestic colleges and universities generally focus on the object-oriented programming language itself,i.e.,the programming grammar of the language,but ignore the design pattern.However,design patterns are essential to software engineering because they can solve common problems in software design and improve code reuse,readability,extensibility,and reliability.Our Object-oriented Software Construction Course is creative since it aims at cultivating students’object-oriented thinking as well as basic abilities required to construct high-quality,object-oriented software.Specifically,we exploit the 5E teaching principle during the education of this course,and present the whole pipeline in the paper.We also provide one case of the factory pattern to further demonstrate the implementation of the 5E teaching principle in the course.The effect of the 5E teaching principle has also been demonstrated.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
文摘Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.
文摘The development of the object-oriented paradigm has suffered from the lackof any generally accepted formal foundations for its semantic definition. Toaddress this issue, we propose the development of the logic-based semantics ofthe object-oriented paradigm. By combining the logic- with the object-orientedparadigm of computing first, this paper discusses formally the semantics of aquite purely object-oriented logic paradigm in terms of proof theory modeltheory and Aspoint theory from the viewpoint of logic. The operational anddeclarative semantics is given. And then the correspondence between soundnessand completeness has been discussed formally.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
基金the National Natural Science Foundation of China(Nos.61562026,61962020)Academic and Technical Leaders of Major Disciplines in Jiangxi Province(No.20172BCB22015)+1 种基金Special Fund Project for Postgraduate Innovation in Jiangxi Province(No.YC2020-B1141)Jiangxi Provincial Natural Science Foundation(No.20224ACB202006).
文摘Fair exchange protocols play a critical role in enabling two distrustful entities to conduct electronic data exchanges in a fair and secure manner.These protocols are widely used in electronic payment systems and electronic contract signing,ensuring the reliability and security of network transactions.In order to address the limitations of current research methods and enhance the analytical capabilities for fair exchange protocols,this paper proposes a formal model for analyzing such protocols.The proposed model begins with a thorough analysis of fair exchange protocols,followed by the formal definition of fairness.This definition accurately captures the inherent requirements of fair exchange protocols.Building upon event logic,the model incorporates the time factor into predicates and introduces knowledge set axioms.This enhancement empowers the improved logic to effectively describe the state and knowledge of protocol participants at different time points,facilitating reasoning about their acquired knowledge.To maximize the intruder’s capabilities,channel errors are translated into the behaviors of the intruder.The participants are further categorized into honest participants and malicious participants,enabling a comprehensive evaluation of the intruder’s potential impact.By employing a typical fair exchange protocol as an illustrative example,this paper demonstrates the detailed steps of utilizing the proposed model for protocol analysis.The entire process of protocol execution under attack scenarios is presented,shedding light on the underlying reasons for the attacks and proposing corresponding countermeasures.The developedmodel enhances the ability to reason about and evaluate the security properties of fair exchange protocols,thereby contributing to the advancement of secure network transactions.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072262)the Shaanxi Computer Society&Xiangteng Company Foundation.
文摘This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.
文摘logical testing model and resource lifecycle information,generate test cases and complete parameters,and alleviate inconsistency issues through parameter inference.Once again,we propose a method of analyzing test results using joint state codes and call stack information,which compensates for the shortcomings of traditional analysis methods.We will apply our method to testing REST services,including OpenStack,an open source cloud operating platform for experimental evaluation.We have found a series of inconsistencies,known vulnerabilities,and new unknown logical defects.
基金National College Students’Training Programs of Innovation and Entrepreneurship,Grant/Award Number:S202210022060the CACMS Innovation Fund,Grant/Award Number:CI2021A00512the National Nature Science Foundation of China under Grant,Grant/Award Number:62206021。
文摘Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
基金sponsored by the National Key Research and Development Program of China(Nos.2017YFA0206202 and 2022YFA1203904)the National Natural Science Foundation of China(No.52271160).
文摘Owing to rapid developments in spintronics,spin-based logic devices have emerged as promising tools for next-generation computing technologies.This paper provides a comprehensive review of recent advancements in spin logic devices,particularly focusing on fundamental device concepts rooted in nanomagnets,magnetoresistive random access memory,spin–orbit torques,electric-field modu-lation,and magnetic domain walls.The operation principles of these devices are comprehensively analyzed,and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized.These devices exhibit reconfigur-able logic capabilities and integrate nonvolatile data storage and computing functionalities.For current-driven spin logic devices,negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits,enabling reconfig-urable Boolean logic operations.Besides,voltage-driven spin logic devices employ another type of negative differential resistance ele-ment to achieve logic functionalities with excellent cascading ability.By cascading several elementary logic gates,the logic circuit of a full adder can be obtained,and the potential of voltage-driven spin logic devices for implementing complex logic functions can be veri-fied.This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising pro-spects they offer for the future of emerging computing schemes.
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
文摘The research purpose of this dissertation is threefold: to innovate artificial intelligence methods, to create the intersection of artificial intelligence and biological research, and to innovate human methodology. The work I have done in my research includes: improving logical structure and logical engineering, using my theory to study the innovation of the development path of artificial intelligence, using my theory to create biomimetic logic, a new intersection of artificial intelligence and biological research, and exploring the innovation of human methodology through the previous two works. The results of the research are as follows: 1) Introduction to bionic logic, incorporating simulations of people, society, and life as core principles. 2) Definition of the logical structure as the primary focus of research, with logic mechanics serving as foundational research principles. 3) Examination of the logical structure’s environment through logical fields and networks. 4) Study of logical structure communication via logical networks and main lines. 5) Proposal of data logic. 6) Investigation into the logic of logical structures, employing structural diagrams of logical equations. 7) Development of a theory of life activity within logical structures, encompassing information reasoning, its corresponding control structure, and structural reasoning. 8) Introduction of the lifecycle theory for logical structures and examination of the clock equation. 9) Exploration of logical structure intelligence. 10) Study of logical structures in mathematical forms. 11) Introduction of logic engineering. 12) Examination of artificial intelligence’s significance. 13) Investigation into the significance of human methodology.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
文摘Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.
基金funded by the National Natural Science Foundation of China:Research on the Energy Management Strategy of Li-Ion Battery and Sc Hybrid Energy Storage System for Electric Vehicle(51677058).
文摘In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.
文摘This article presents a fuzzy logic-based approach to coordinate the control devices of the power system, such as Power System Stabilizers (PSS) and Static Synchronous Compensators (STATCOM), to damp power oscillations caused by dynamic disturbances. At first, we used the Lyapunov method to study the dynamic stability of the power grid in the Republic of Congo. This method allowed us to analyze the eigenvalues of the state variable matrix and highlight the eigenvalues in the complex plane. Secondly, we proposed a fuzzy logic-based controller to account for uncertainties existing near the thresholds. The inputs to this controller are the generator speed and generator rotor angle. We demonstrated the effectiveness and feasibility of this fuzzy control by applying it to the power grid of the Republic of Congo, with three power stabilizers and two STATCOMs. .