Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a...Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.展开更多
Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly...Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy.展开更多
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta...The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.展开更多
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ...A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%.展开更多
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to...Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.展开更多
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are ...Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%.展开更多
Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high ...Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1.展开更多
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c...Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.展开更多
In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has imp...In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has important practical significance in the fields of automatic driving,transportation planning,and intelligent transportation systems.However,the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges.Therefore,this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues.The model uses the lightweight backbone network MobileNet instead of the LiteSeg backbone network to reduce the network parameters and computation,and combines the Coordinate Attention(CA)mechanism to help the network capture long-distance dependencies.At the same time,by combining the dependencies of spatial information and channel information,the Spatial and Channel Network(SCNet)attention mechanism is proposed to improve the feature extraction ability of the model.Finally,a multiscale transposed attention encoding(MTAE)module was proposed to obtain features of different resolutions and perform feature fusion.In this paper,the proposed model is verified on the Cityscapes dataset.The experimental results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union(mIoU)of the original LiteSeg model by 4.69%.On this basis,the backbone network is replaced with MobileNet,and the CA model is added at the same time.At the cost of increasing the minimum model parameters and computing costs,the mIoU of the original LiteSeg model is increased by 2.46%.This article also compares the proposed model with some current lightweight semantic segmentation models,and experiments show that the comprehensive performance of the proposed model is the best,especially in achieving excellent results in small object segmentation.Finally,this article will conduct generalization testing on the KITTI dataset for the proposed model,and the experimental results show that the proposed algorithm has a certain degree of generalization.展开更多
Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of...Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD.We used an unmanned aerial vehicle(UAV)platform equipped with an RGB digital camera to obtain high spatial resolution images,and multiscale segmentation was applied to delineate the tree crown,coupling the use of object-oriented classification to classify trees discolored by PWD.Then,the optimal segmentation scale was implemented using the estimation of scale parameter(ESP2)plug-in.The feature space of the segmentation results was optimized,and appropriate features were selected for classification.The results showed that the optimal scale,shape,and compactness values of the tree crown segmentation algorithm were 56,0.5,and 0.8,respectively.The producer’s accuracy(PA),user’s accuracy(UA),and F1 score were 0.722,0.605,and 0.658,respectively.There were no significant classification errors in the final classification results,and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation.The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing.This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.展开更多
With the development of remote sensing technology, the spatial resolution, spectral resolution and time resolution of remote sensing data are greatly improved. How to efficiently process and interpret the massive high...With the development of remote sensing technology, the spatial resolution, spectral resolution and time resolution of remote sensing data are greatly improved. How to efficiently process and interpret the massive high resolution remote sensing image data for ground objects, which are of spatial geometry and texture information, has become the focus and key issue in the field of remote sensing research. A new method of the classification (OCRC (object-oriented and class rule classification)) of remote sensing, which is of object-oriented and rule, has been presented in this paper, that is, through the discovery and mining the knowledge of spectrum and spatial characteristics of high-resolution remote sensing image, establish a multi-level network image object segmentation and classification structure of remote sensing image to achieve classification and accuracy assessment accurately and quickly for ground targets. Selected the worldview-2 image data in the Zangnan area as a study object, using the OCRC to verify the experiment which was a combination of the mean variance method, the maximum area method and the accuracy comparison to analysis selected three kinds of optimal segmentation scale and established a multi-level image object network hierarchy for image classification experiments. The results show that the OCRC can enable the high resolution image classification results similar to the visual interpretation of the results, and has higher classification accuracy. The overall accuracy and Kappa coefficient of the object-oriented rule classification method are 97.38%, 0.9673; compared with object-oriented SVM method, respectively higher than 6.23%, 0.078; compared with object-oriented KNN method, respectively more than 7.96%, 0.0996. The extraction precision and user accuracy of the buildings compared with object-oriented SVM method, respectively higher than 18.39%, 3.98%, respectively better than the object-oriented KNN (K-Nearest Neighbor) method 21.27%, 14.97%.展开更多
Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography(MRA)is essential for medical auxiliary treatments,which can effectively prevent subarachnoid hemorrhages.This paper proposes a...Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography(MRA)is essential for medical auxiliary treatments,which can effectively prevent subarachnoid hemorrhages.This paper proposes an image segmentation model based on a dense convolutional attention U-Net,which fuses deep and rich semantic information with shallow-detail information for adaptive and accurate segmentation of MRA-acquired aneurysm images with large size differences.The U-Net model serves as a backbone,combining dense block and convolution block attention module(CBAM).The dense block is composed of a batch normalization layer,an randomly rectified linear unit activation function,and a convolutional layer,for mitigation of vanishing gradients,for multiplexing of aneurysm features,and for improving the network training efficiency.The CBAM is composed of a channel attention module and a spatial attention module,improving the segmentation performance of feature discrimination and enhancing the acquisition of key feature information.Owing to the large variation of aneurysm sizes,multi-scale fusion is performed during up-sampling,for adaptive segmentation of MRA-acquired aneurysm images.The model was tested on the MICCAI 2020 ADAM dataset,and its generalizability was validated on the clinical aneurysm dataset(aneurysm sizes:<3 mm,3–7 mm,and>7 mm)supplied by the Affiliated Hospital of Qingdao University.A good clinical application segmentation performance was demonstrated.展开更多
Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector fl...Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.展开更多
As a highly vascular eye part,the choroid is crucial in various eye disease diagnoses.However,limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate l...As a highly vascular eye part,the choroid is crucial in various eye disease diagnoses.However,limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data,particularly for the choroidal vessels.Meanwhile,the existing direct choroidal vessel segmentation methods for the intelligent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data,while the synergistic segmentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks.Common cascaded structures grapple with error propagation during training.To address these challenges,we propose a cascade learning segmentation method for the inner vessel structures of the choroid in this paper.Specifically,we propose TransformerAssisted Cascade Learning Network(TACLNet)for choroidal vessel segmentation,which comprises a two-stage training strategy:pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation.We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as MSC,capturing differential and detailed information simultaneously.Additionally,we implement an auxiliary Transformer branch named ATB to integrate global features into the segmentation process.Experimental results exhibit that our method achieves the state-of-the-art performance for choroidal vessel segmentation.Besides,we further validate the significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography(OCT)scans on a publicly available dataset.All these fully prove that our TACLNet contributes to the advancement of choroidal vessel segmentation and is of great significance for ophthalmic research and clinical application.展开更多
The 1:200,000 middle-large scale Bouguer gravity anomaly data covering the southern segment of the Liaocheng-Lankao fault(SLLF)and its vicinity are analyzed with two methods.First,the Bouguer gravity anomaly data are ...The 1:200,000 middle-large scale Bouguer gravity anomaly data covering the southern segment of the Liaocheng-Lankao fault(SLLF)and its vicinity are analyzed with two methods.First,the Bouguer gravity anomaly data are decomposed by two-dimensional(2 D)wavelet to make the family of multi-scale modes correspond with density structure at different depths.Second,a two and half dimension(2.5 D)human-computer interaction inversion of the Bouguer gravity anomaly data are conducted with the constraints provided by two deep seismic sounding profiles(DSS1 and DSS2)crossing the study area to get the crustal density profiles.Based on the integrated study,we can draw the following conclusions:1)SLLF appears to be a deep fault with almost vertical dipping and rooted into the uppermost mantle;2)In the middle to upper crust SLLF shows an clear turning patterns and segmentation features;3)In the study area the epicentral distributions of the precisely re-located small earthquakes and the historical large earthquakes have a good correspondence with the turning patterns and segmentation features of SLLF;and 4)The results of the horizontal slices from 2 D wavelet decomposition show that there are significant differences in the density structure on the two sides of the fault.A well-defined concave structure with low density exists in the upper crust of the Dongming Depression on the west side of the fault,with the concave center being estimated at a depth of about 8 km.In contrast,the upper crust on the east side presents a relative thinner pattern in depth with a bit higher density.Meanwhile,the low-density structure in the middle crust underneath the fault is presumably caused by the uplift of the upper mantle materials and their intrusion along the deep rupture system.This paper clarified the inconsistency of fault system and epicenters of small earthquakes from upper to lower crust.The results indicated that the fault system plays an important governing role to the seismicity in this area.展开更多
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.展开更多
The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolu...The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolution.We used two key techniques:the selection of optimum image segmentation scale and the development of an appropriate object-oriented information extraction strategy.With the principle of minimizing merge cost of merging neighboring pixels/objects,we used spatial autocorrelation index Moran's I and the variance index to select the optimum segmentation scale.The Nearest Neighborhood(NN) classifier based on sampling and a knowledge-based fuzzy classifier were used in the object-oriented information extraction strategy.In this classification step,feature optimization was used to improve information extraction accuracy using reduced data dimension.These two techniques were applied to land cover information extraction for Shanghai city using a HJ-1 CCD image.Results indicate that the information extraction accuracy of the object-oriented method was much higher than that of the pixel-based method.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
Information of Antarctic iceberg and sea ice are valuable to Antarctic ice melting patterns studies which are helpful to understand climate conditions and general trends of our planet.This paper presents an automatic ...Information of Antarctic iceberg and sea ice are valuable to Antarctic ice melting patterns studies which are helpful to understand climate conditions and general trends of our planet.This paper presents an automatic floating ice extraction method based on image segmentation technology using region growing.It effectively solves the over-segmentation and under-segmentation problems by merging the gray,contour,location and other information of each ice-object.A pixel-based extraction method is proposed to extract the small ices within 5 pixels.LANDSAT TM data,Chinese environment disaster satellite HJ1B data,and MODIS 1B data used to detect Floating ice at Antarctic continental margin respectively.The results showed that the extraction accuracies of the three kinds of data were all higher than 81 percent,while the accuracies of both TM data and HJ1B data were higher than 90%.Object-based information extraction methods can not only obtain the total area and number of floating ice objects in the whole region,but also provide precise details of single objects,including area,perimeter,contour,average brightness.展开更多
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
基金funded by the National Natural Foundation of China under Grant No.61172167the Science Fund Project of Heilongjiang Province(LH2020F035).
文摘Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.
基金This work is supported by the Natural Science Foundation of China(No.82372035)National Transportation Preparedness Projects(No.ZYZZYJ).Light of West China(No.XAB2022YN10)The China Postdoctoral Science Foundation(No.2023M740760).
文摘Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy.
基金This work was supported in part by the National Natural Science Foundation of China(Grant#:82260362)in part by the National Key R&D Program of China(Grant#:2021ZD0111000)+1 种基金in part by the Key R&D Project of Hainan Province(Grant#:ZDYF2021SHFZ243)in part by the Major Science and Technology Project of Haikou(Grant#:2020-009).
文摘The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.
基金Projects(61172002,61001047,60671050)supported by the National Natural Science Foundation of ChinaProject(N100404010)supported by Fundamental Research Grant Scheme for the Central Universities,China
文摘A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%.
基金National Natural Science Foundation of China(No.61261029)
文摘Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.
基金This work was supported by the Project of Sichuan Outstanding Young Scientific and Technological Talents(19JCQN0003)the major Project of Education Department in Sichuan(17ZA0063 and 2017JQ0030)+1 种基金in part by the Natural Science Foundation for Young Scientists of CUIT(J201704)the Sichuan Science and Technology Program(2019JDRC0077).
文摘Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%.
基金supported in part by the National Natural Science Foundation of China under Grant 61972267the National Natural Science Foundation of Hebei Province under Grant F2018210148the University Science Research Project of Hebei Province under Grant ZD2021334.
文摘Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1.
基金the Ministry of Higher Education Malaysia for financially supported under the FundamentalResearch Grant Scheme (FRGS/1/2020/TK0/UNIMAP/02/17).
文摘Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.
基金the National Natural Science Foundation of China(No.62063006)the Natural Science Foundation of Guangxi Province(No.2023GXNSFAA026025)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2021RYC06005)to the Research Project for Young and Middle-Aged Teachers in Guangxi Universities(ID:2020KY15013)to the Special Research Project of Hechi University(ID:2021GCC028)supported by the Project of Outstanding Thousand Young Teachers’Training in Higher Education Institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region.
文摘In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has important practical significance in the fields of automatic driving,transportation planning,and intelligent transportation systems.However,the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges.Therefore,this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues.The model uses the lightweight backbone network MobileNet instead of the LiteSeg backbone network to reduce the network parameters and computation,and combines the Coordinate Attention(CA)mechanism to help the network capture long-distance dependencies.At the same time,by combining the dependencies of spatial information and channel information,the Spatial and Channel Network(SCNet)attention mechanism is proposed to improve the feature extraction ability of the model.Finally,a multiscale transposed attention encoding(MTAE)module was proposed to obtain features of different resolutions and perform feature fusion.In this paper,the proposed model is verified on the Cityscapes dataset.The experimental results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union(mIoU)of the original LiteSeg model by 4.69%.On this basis,the backbone network is replaced with MobileNet,and the CA model is added at the same time.At the cost of increasing the minimum model parameters and computing costs,the mIoU of the original LiteSeg model is increased by 2.46%.This article also compares the proposed model with some current lightweight semantic segmentation models,and experiments show that the comprehensive performance of the proposed model is the best,especially in achieving excellent results in small object segmentation.Finally,this article will conduct generalization testing on the KITTI dataset for the proposed model,and the experimental results show that the proposed algorithm has a certain degree of generalization.
基金supported by the National Natural Science Foundation of China(No.31870620)the National Technology Extension Fund of Forestry([2019]06)the Fundamental Research Funds for the Central Universities(No.PTYX202107)。
文摘Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD.We used an unmanned aerial vehicle(UAV)platform equipped with an RGB digital camera to obtain high spatial resolution images,and multiscale segmentation was applied to delineate the tree crown,coupling the use of object-oriented classification to classify trees discolored by PWD.Then,the optimal segmentation scale was implemented using the estimation of scale parameter(ESP2)plug-in.The feature space of the segmentation results was optimized,and appropriate features were selected for classification.The results showed that the optimal scale,shape,and compactness values of the tree crown segmentation algorithm were 56,0.5,and 0.8,respectively.The producer’s accuracy(PA),user’s accuracy(UA),and F1 score were 0.722,0.605,and 0.658,respectively.There were no significant classification errors in the final classification results,and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation.The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing.This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.
基金This paper is funded jointly by projects of the National Natural Science Foundation of China (41571374), the key research project of Hunan Education Ministry (No.16A070), Nature Science Joint Funding of Hunan province and Xiangtan Local (No.2017JJ4037).
文摘With the development of remote sensing technology, the spatial resolution, spectral resolution and time resolution of remote sensing data are greatly improved. How to efficiently process and interpret the massive high resolution remote sensing image data for ground objects, which are of spatial geometry and texture information, has become the focus and key issue in the field of remote sensing research. A new method of the classification (OCRC (object-oriented and class rule classification)) of remote sensing, which is of object-oriented and rule, has been presented in this paper, that is, through the discovery and mining the knowledge of spectrum and spatial characteristics of high-resolution remote sensing image, establish a multi-level network image object segmentation and classification structure of remote sensing image to achieve classification and accuracy assessment accurately and quickly for ground targets. Selected the worldview-2 image data in the Zangnan area as a study object, using the OCRC to verify the experiment which was a combination of the mean variance method, the maximum area method and the accuracy comparison to analysis selected three kinds of optimal segmentation scale and established a multi-level image object network hierarchy for image classification experiments. The results show that the OCRC can enable the high resolution image classification results similar to the visual interpretation of the results, and has higher classification accuracy. The overall accuracy and Kappa coefficient of the object-oriented rule classification method are 97.38%, 0.9673; compared with object-oriented SVM method, respectively higher than 6.23%, 0.078; compared with object-oriented KNN method, respectively more than 7.96%, 0.0996. The extraction precision and user accuracy of the buildings compared with object-oriented SVM method, respectively higher than 18.39%, 3.98%, respectively better than the object-oriented KNN (K-Nearest Neighbor) method 21.27%, 14.97%.
基金This study was funded by the National Natural Science Foundation of China,No.61976126the Shandong Nature Science Foundation of China,No.ZR2019MF003.
文摘Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography(MRA)is essential for medical auxiliary treatments,which can effectively prevent subarachnoid hemorrhages.This paper proposes an image segmentation model based on a dense convolutional attention U-Net,which fuses deep and rich semantic information with shallow-detail information for adaptive and accurate segmentation of MRA-acquired aneurysm images with large size differences.The U-Net model serves as a backbone,combining dense block and convolution block attention module(CBAM).The dense block is composed of a batch normalization layer,an randomly rectified linear unit activation function,and a convolutional layer,for mitigation of vanishing gradients,for multiplexing of aneurysm features,and for improving the network training efficiency.The CBAM is composed of a channel attention module and a spatial attention module,improving the segmentation performance of feature discrimination and enhancing the acquisition of key feature information.Owing to the large variation of aneurysm sizes,multi-scale fusion is performed during up-sampling,for adaptive segmentation of MRA-acquired aneurysm images.The model was tested on the MICCAI 2020 ADAM dataset,and its generalizability was validated on the clinical aneurysm dataset(aneurysm sizes:<3 mm,3–7 mm,and>7 mm)supplied by the Affiliated Hospital of Qingdao University.A good clinical application segmentation performance was demonstrated.
文摘Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.
基金supported by the National Natural Science Foundation of China under Grant Nos.62301330 and 62101346the Guangdong Basic and Applied Basic Research Foundation under Grant Nos.20231121103807001,2022A1515110101the Guangdong Provincial Key Laboratory under Grant No.2023B1212060076.
文摘As a highly vascular eye part,the choroid is crucial in various eye disease diagnoses.However,limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data,particularly for the choroidal vessels.Meanwhile,the existing direct choroidal vessel segmentation methods for the intelligent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data,while the synergistic segmentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks.Common cascaded structures grapple with error propagation during training.To address these challenges,we propose a cascade learning segmentation method for the inner vessel structures of the choroid in this paper.Specifically,we propose TransformerAssisted Cascade Learning Network(TACLNet)for choroidal vessel segmentation,which comprises a two-stage training strategy:pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation.We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as MSC,capturing differential and detailed information simultaneously.Additionally,we implement an auxiliary Transformer branch named ATB to integrate global features into the segmentation process.Experimental results exhibit that our method achieves the state-of-the-art performance for choroidal vessel segmentation.Besides,we further validate the significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography(OCT)scans on a publicly available dataset.All these fully prove that our TACLNet contributes to the advancement of choroidal vessel segmentation and is of great significance for ophthalmic research and clinical application.
基金financial support from China Scholarship Councilthe support from the Seismic Youth Founding of GEC (Grant No. YFGEC2016008)the National Natural Science Foundation of China(Grant No. 41474077)
文摘The 1:200,000 middle-large scale Bouguer gravity anomaly data covering the southern segment of the Liaocheng-Lankao fault(SLLF)and its vicinity are analyzed with two methods.First,the Bouguer gravity anomaly data are decomposed by two-dimensional(2 D)wavelet to make the family of multi-scale modes correspond with density structure at different depths.Second,a two and half dimension(2.5 D)human-computer interaction inversion of the Bouguer gravity anomaly data are conducted with the constraints provided by two deep seismic sounding profiles(DSS1 and DSS2)crossing the study area to get the crustal density profiles.Based on the integrated study,we can draw the following conclusions:1)SLLF appears to be a deep fault with almost vertical dipping and rooted into the uppermost mantle;2)In the middle to upper crust SLLF shows an clear turning patterns and segmentation features;3)In the study area the epicentral distributions of the precisely re-located small earthquakes and the historical large earthquakes have a good correspondence with the turning patterns and segmentation features of SLLF;and 4)The results of the horizontal slices from 2 D wavelet decomposition show that there are significant differences in the density structure on the two sides of the fault.A well-defined concave structure with low density exists in the upper crust of the Dongming Depression on the west side of the fault,with the concave center being estimated at a depth of about 8 km.In contrast,the upper crust on the east side presents a relative thinner pattern in depth with a bit higher density.Meanwhile,the low-density structure in the middle crust underneath the fault is presumably caused by the uplift of the upper mantle materials and their intrusion along the deep rupture system.This paper clarified the inconsistency of fault system and epicenters of small earthquakes from upper to lower crust.The results indicated that the fault system plays an important governing role to the seismicity in this area.
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.
基金supported by National Key Technology Research and Development Program of China (Grant Nos.2008BAC34B02 and 2008BAC3403)
文摘The object-oriented information extraction technique was used to improve classification accuracy,and addressed the problem that HJ-1 CCD remote sensing images have only four spectral bands with moderate spatial resolution.We used two key techniques:the selection of optimum image segmentation scale and the development of an appropriate object-oriented information extraction strategy.With the principle of minimizing merge cost of merging neighboring pixels/objects,we used spatial autocorrelation index Moran's I and the variance index to select the optimum segmentation scale.The Nearest Neighborhood(NN) classifier based on sampling and a knowledge-based fuzzy classifier were used in the object-oriented information extraction strategy.In this classification step,feature optimization was used to improve information extraction accuracy using reduced data dimension.These two techniques were applied to land cover information extraction for Shanghai city using a HJ-1 CCD image.Results indicate that the information extraction accuracy of the object-oriented method was much higher than that of the pixel-based method.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
基金Supported by the National High Technology Research and Development Program of China (Grant No.2008AA09Z117)
文摘Information of Antarctic iceberg and sea ice are valuable to Antarctic ice melting patterns studies which are helpful to understand climate conditions and general trends of our planet.This paper presents an automatic floating ice extraction method based on image segmentation technology using region growing.It effectively solves the over-segmentation and under-segmentation problems by merging the gray,contour,location and other information of each ice-object.A pixel-based extraction method is proposed to extract the small ices within 5 pixels.LANDSAT TM data,Chinese environment disaster satellite HJ1B data,and MODIS 1B data used to detect Floating ice at Antarctic continental margin respectively.The results showed that the extraction accuracies of the three kinds of data were all higher than 81 percent,while the accuracies of both TM data and HJ1B data were higher than 90%.Object-based information extraction methods can not only obtain the total area and number of floating ice objects in the whole region,but also provide precise details of single objects,including area,perimeter,contour,average brightness.