针对传统ORB(Oriented FAST and Rotated BRIEF)算法提取图像特征时存在的特征点数量不足且分布不均匀问题,提出了一种基于四叉树的ORB特征阶梯分布算法。通过四叉树算法分割出特征点疏密不同的区域,对每个区域采用逐步降低阈值的方法,...针对传统ORB(Oriented FAST and Rotated BRIEF)算法提取图像特征时存在的特征点数量不足且分布不均匀问题,提出了一种基于四叉树的ORB特征阶梯分布算法。通过四叉树算法分割出特征点疏密不同的区域,对每个区域采用逐步降低阈值的方法,实现FAST(Features from Accelerated Segment Test)角点自适应提取;同时依据分割区域设置逐次递减的分割深度和特征点提取比例,以减少运算时间和特征冗余,使特征点分布更均匀。采用覆盖均匀度对特征点的均匀性进行量化。试验结果表明,该算法比传统ORB算法单幅图片的特征点提取数量平均多10.45%,覆盖均匀度平均低20%,运行时间比Mur-Artal算法平均减少20.54%,有效地提高了提取特征点的数量和均匀性,提升了运算效率。展开更多
在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素...在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。展开更多
基于特征的视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)存在实时性和鲁棒性差等问题,提出一种改进的基于四叉树的ORB特征提取方法,设计包含前后端及地图构建的机器人RGB-D SLAM算法。在前端使用四叉树方法完成...基于特征的视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)存在实时性和鲁棒性差等问题,提出一种改进的基于四叉树的ORB特征提取方法,设计包含前后端及地图构建的机器人RGB-D SLAM算法。在前端使用四叉树方法完成ORB特征的均匀提取,计算描述子间汉明距离实现特征匹配。根据随机采样一致性算法思想,结合EPNP(Efficient Perspective-N-Point)和迭代最近点法求解位姿,获取多次迭代后的准确位姿。采用关键帧进行回环检测,并且基于光速法平差优化位姿图,从而构建全局一致的3D地图,达到减少累积误差的目的。通过TUM数据集和多履带式全向移动机器人进行对比验证,实验结果满足实时性和稳定性要求,证明了算法的可行性和有效性。展开更多
基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB...基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB(A-ORB)算法。该算法构造图像金字塔解决尺度不变性问题;根据所提取的特征点总数计算出每层金字塔所需要提取的特征点数;对每层金字塔图像采用自适应区域划分,根据图像信息计算特征点提取阈值;利用改进四叉树算法来均匀化分布特征点。进行了模拟实验。结果表明:相较于ORB、MA以及S-ORB算法,该算法运行效率提高了30%以上,匹配精度提高了10%以上。展开更多
针对移动机器人视觉即时定位与地图构建(simultaneous localization and mapping,SLAM)的闭环检测问题,提出了基于改进ORB(oriented fast and rotated brief)的视觉SLAM闭环检测算法。首先提取具有尺度不变性的特征点,然后借鉴ORB算法...针对移动机器人视觉即时定位与地图构建(simultaneous localization and mapping,SLAM)的闭环检测问题,提出了基于改进ORB(oriented fast and rotated brief)的视觉SLAM闭环检测算法。首先提取具有尺度不变性的特征点,然后借鉴ORB算法构建特征描述子,再通过聚类特征描述子实现类中心,递归生成k叉树的词袋模型(bag-of-words,BoW),提升查找效率,最后运用BoW快速准确判断被检测图像之间是否形成闭环。实验中分别使用计算机视觉测评数据集KITTI的第12序列和德国慕尼黑工业大学公开数据集TUM2对所提算法进行验证,并与其他3种经典的算法进行对比,结果表明,所提算法在两种数据集上分别达到了91.8%和98%的准确率,算法可行和有效。展开更多
文摘针对传统ORB(Oriented FAST and Rotated BRIEF)算法提取图像特征时存在的特征点数量不足且分布不均匀问题,提出了一种基于四叉树的ORB特征阶梯分布算法。通过四叉树算法分割出特征点疏密不同的区域,对每个区域采用逐步降低阈值的方法,实现FAST(Features from Accelerated Segment Test)角点自适应提取;同时依据分割区域设置逐次递减的分割深度和特征点提取比例,以减少运算时间和特征冗余,使特征点分布更均匀。采用覆盖均匀度对特征点的均匀性进行量化。试验结果表明,该算法比传统ORB算法单幅图片的特征点提取数量平均多10.45%,覆盖均匀度平均低20%,运行时间比Mur-Artal算法平均减少20.54%,有效地提高了提取特征点的数量和均匀性,提升了运算效率。
文摘在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。
文摘基于相机的无人驾驶汽车视觉同步定位与地图构建(SLAM),可完成无人驾驶汽车的定位与建图。针对传统ORB(Oriented FAST and Rotated BRIEF)算法在提取图像特征点时容易造成冗杂、分布集中的问题,提出一种限制四叉树算法分裂深度的改进ORB(A-ORB)算法。该算法构造图像金字塔解决尺度不变性问题;根据所提取的特征点总数计算出每层金字塔所需要提取的特征点数;对每层金字塔图像采用自适应区域划分,根据图像信息计算特征点提取阈值;利用改进四叉树算法来均匀化分布特征点。进行了模拟实验。结果表明:相较于ORB、MA以及S-ORB算法,该算法运行效率提高了30%以上,匹配精度提高了10%以上。
文摘针对移动机器人视觉即时定位与地图构建(simultaneous localization and mapping,SLAM)的闭环检测问题,提出了基于改进ORB(oriented fast and rotated brief)的视觉SLAM闭环检测算法。首先提取具有尺度不变性的特征点,然后借鉴ORB算法构建特征描述子,再通过聚类特征描述子实现类中心,递归生成k叉树的词袋模型(bag-of-words,BoW),提升查找效率,最后运用BoW快速准确判断被检测图像之间是否形成闭环。实验中分别使用计算机视觉测评数据集KITTI的第12序列和德国慕尼黑工业大学公开数据集TUM2对所提算法进行验证,并与其他3种经典的算法进行对比,结果表明,所提算法在两种数据集上分别达到了91.8%和98%的准确率,算法可行和有效。