Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have becom...Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.展开更多
Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability ...Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.展开更多
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weake...In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.展开更多
There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most ...There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.展开更多
This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework i...This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.展开更多
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It a...Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines.展开更多
Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-u...Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-up attention and the object-driven, top-down attention, whereas the previous attention model has mostly focused on either the bottom-up or top-down attention. By the bottom-up component, the whole scene is segmented into the ground region and the salient regions. Guided by top-down strategy which is achieved by a topological graph, the object regions are separated from the salient regions. The salient regions except the object regions are the barrier regions. In order to estimate the model, a mobile robot platform is developed, on which some experiments are implemented. The experimental results indicate that processing an image with a resolution of 752 × 480 pixels takes less than 200 ms and the object regions are unabridged. The analysis obtained by comparing the proposed model with the existing model demonstrates that the proposed model has some advantages in robot object tracking in terms of speed and efficiency.展开更多
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf...A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.展开更多
In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for t...In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method...An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.展开更多
Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challen...Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively.展开更多
Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movemen...Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application.展开更多
Video object tracking is an important research topic of computer vision, whichfinds a wide range of applications in video surveillance, robotics, human-computerinteraction and so on. Although many moving object tracki...Video object tracking is an important research topic of computer vision, whichfinds a wide range of applications in video surveillance, robotics, human-computerinteraction and so on. Although many moving object tracking algorithms have beenproposed, there are still many difficulties in the actual tracking process, such asillumination change, occlusion, motion blurring, scale change, self-change and so on.Therefore, the development of object tracking technology is still challenging. Theemergence of deep learning theory and method provides a new opportunity for theresearch of object tracking, and it is also the main theoretical framework for the researchof moving object tracking algorithm in this paper. In this paper, the existing deeptracking-based target tracking algorithms are classified and sorted out. Based on theprevious knowledge and my own understanding, several solutions are proposed for theexisting methods. In addition, the existing deep learning target tracking method is stilldifficult to meet the requirements of real-time, how to design the network and trackingprocess to achieve speed and effect improvement, there is still a lot of research space.展开更多
If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if th...If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if the object goes beyond the limits of mean shift snake module operation in suc- cessive sequences, mean shift snake's nodes may also fall into the local minima in their moving to the new object position. This paper presents a motion compensation strategy by using particle filter; therefore a new Particle Filter Mean Shift Snake (PFMSS) algorithm is proposed which combines particle filter with mean shift snake to fulfill the estimation of the fast moving object contour. Firstly, the fast moving object is tracked by particle filter to create a coarse position which is used to initialize the mean shift algorithm. Secondly, the whole relevant motion information is used to compensate the snake's node positions. Finally, snake algorithm is used to extract the exact object contour and the useful information of the object is fed back. Some real world sequences are tested and the results show that the novel tracking method have a good performance with high accuracy in solving the fast moving problems in cluttered background.展开更多
On accomplishing an efficacious object tracking,the activity of an object concerned becomes notified in a forthright manner.An accurate form of object tracking task necessitates a robust object tracking procedures irr...On accomplishing an efficacious object tracking,the activity of an object concerned becomes notified in a forthright manner.An accurate form of object tracking task necessitates a robust object tracking procedures irrespective of hardware assistance.Such approaches inferred a vast computational complexity to track an object with high accuracy in a stipulated amount of processing time.On the other hand,the tracking gets affected owing to the existence of varied quality diminishing factors such as occlusion,illumination changes,shadows etc.,In order to rectify all these inadequacies in tracking an object,a novel background normalization procedure articulated on the basis of a textural pattern is proposed in this paper.After preprocessing an acquired image,employment of an Environmental Succession Prediction algorithm for discriminating disparate background environment by background clustering approach have been accomplished.Afterward,abstract textural characterizations through utilization of a Probability based Gradient Pattern(PGP)approach for recognizing the similarity between patterns obtained so far.Comparison between standardized frame obtained in prior and those processed patterns detects the motion exposed by an object and the object concerned gets identified within a blob.Hence,the system is resistant towards illumination variations.These illumination variation was interpreted in object tracking residing within a dynamic background.Devised approach certainly outperforms other object tracking methodologies like Group Target Tracking(GTT),Vi PER-GT,grabcut,snakes in terms of accuracy and average time.Proposed PGP-based pattern texture analysis is compared with Gamifying Video Object(GVO)approach and hence,it evidently outperforms in terms of precision,recall and F1 measure.展开更多
This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process.A reinforcement learning(RL)agent successfully tracks an interface between two liquids...This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process.A reinforcement learning(RL)agent successfully tracks an interface between two liquids,which is often a critical variable to track in many chemical,petrochemical,metallurgical,and oil industries.This method utilizes less than 100 images for creating an environment,from which the agent generates its own data without the need for expert knowledge.Unlike supervised learning(SL)methods that rely on a huge number of parameters,this approach requires far fewer parameters,which naturally reduces its maintenance cost.Besides its frugal nature,the agent is robust to environmental uncertainties such as occlusion,intensity changes,and excessive noise.From a closed-loop control context,an interface location-based deviation is chosen as the optimization goal during training.The methodology showcases RL for real-time object-tracking applications in the oil sands industry.Along with a presentation of the interface tracking problem,this paper provides a detailed review of one of the most effective RL methodologies:actor–critic policy.展开更多
Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.Howev...Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.However,most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs.To meet the tracking precision and real-time requirements,this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL.Specifically,the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network,then performs correlationmatching to obtain the candidate regionwith high similarity.To improve the matching effect of template and search features,this paper designs a dense pixel-level feature fusion module to enhance the matching ability by pixel-wise correlation and enrich the feature diversity by dense connection.An attention module composed of self-attention and channel attention is introduced to learn global context information and selectively emphasize the target feature region in the spatial and channel dimensions.In addition,a target localization module is designed to improve target location accuracy.Compared with other advanced trackers,experiments on two public benchmarks,which are UAV123@10fps and UAV20L fromthe unmanned air vehicle123(UAV123)dataset,show that SiamDPL can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX.展开更多
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
基金supported by the National Natural Science Foundation of China under Grant 62177029the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0740),China.
文摘Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.
文摘Visual object-tracking is a fundamental task applied in many applications of computer vision. Particle filter is one of the techniques which has been widely used in object tracking. Due to the virtue of extendability and flexibility on both linear and non-linear environments, various particle filter-based trackers have been proposed in the literature. However, the conventional approach cannot handle very large videos efficiently in the current data intensive information age. In this work, a parallelized particle filter is provided in a distributed framework provided by the Hadoop/Map-Reduce infrastructure to tackle object-tracking tasks. The experiments indicate that the proposed algorithm has a better convergence and accuracy as compared to the traditional particle filter. The computational power and the scalability of the proposed particle filter in single object tracking have been enhanced as well.
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
基金National Natural Science Foundation of China(No.61201412)
文摘In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm.
基金supported in part by the Institute for Guo Qiang of Tsinghua University(2019GQG1023)in part by Graduate Education and Teaching Reform Project of Tsinghua University(202007J007)+1 种基金in part by National Natural Science Foundation of China(U19B2029,62073028,61803222)in part by the Independent Research Program of Tsinghua University(2018Z05JDX002)。
文摘There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.
基金supported by the National Natural Science Foundation of China(Grant No.51009040)Heilongjiang Postdoctoral Fund(Grant No.LBH-Z11205)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2011AA09A106)the China Postdoctoral Science Foundation(Grant No.2012M510928)
文摘This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.
基金the Framework of International Cooperation Program managed by the National Research Foundation of Korea(2019K1A3A1A8011295711).
文摘Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines.
基金supported by National Basic Research Program of China (973 Program) (No. 2006CB300407)National Natural Science Foundation of China (No. 50775017)
文摘Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-up attention and the object-driven, top-down attention, whereas the previous attention model has mostly focused on either the bottom-up or top-down attention. By the bottom-up component, the whole scene is segmented into the ground region and the salient regions. Guided by top-down strategy which is achieved by a topological graph, the object regions are separated from the salient regions. The salient regions except the object regions are the barrier regions. In order to estimate the model, a mobile robot platform is developed, on which some experiments are implemented. The experimental results indicate that processing an image with a resolution of 752 × 480 pixels takes less than 200 ms and the object regions are unabridged. The analysis obtained by comparing the proposed model with the existing model demonstrates that the proposed model has some advantages in robot object tracking in terms of speed and efficiency.
文摘A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect.
基金This work was supported in part by the Beijing Natural Science Foundation(L191004)the National Natural Science Foundation of China under No.61720106007 and No.61872047+1 种基金the Beijing Nova Program under No.Z201100006820124the Funds for Cre ative Research Groups of China under No.61921003,and the 111 Project(B18008).
文摘In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金supported by the National Natural Science Foundation of China(60835004 60775047+2 种基金 60872130)the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)
文摘An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2023-RS-2022-00156326)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation).
文摘Unmanned aerial vehicles(UAVs)can be used to monitor traffic in a variety of settings,including security,traffic surveillance,and traffic control.Numerous academics have been drawn to this topic because of the challenges and the large variety of applications.This paper proposes a new and efficient vehicle detection and tracking system that is based on road extraction and identifying objects on it.It is inspired by existing detection systems that comprise stationary data collectors such as induction loops and stationary cameras that have a limited field of view and are not mobile.The goal of this study is to develop a method that first extracts the region of interest(ROI),then finds and tracks the items of interest.The suggested system is divided into six stages.The photos from the obtained dataset are appropriately georeferenced to their actual locations in the first phase,after which they are all co-registered.The ROI,or road and its objects,are retrieved using the GrabCut method in the second phase.The third phase entails data preparation.The segmented images’noise is eliminated using Gaussian blur,after which the images are changed to grayscale and forwarded to the following stage for additional morphological procedures.The YOLOv3 algorithm is used in the fourth step to find any automobiles in the photos.Following that,the Kalman filter and centroid tracking are used to perform the tracking of the detected cars.The Lucas-Kanade method is then used to perform the trajectory analysis on the vehicles.The suggested model is put to the test and assessed using the Vehicle Aerial Imaging from Drone(VAID)dataset.For detection and tracking,the model was able to attain accuracy levels of 96.7%and 91.6%,respectively.
基金supported by the Zhejiang Key Laboratory of General Aviation Operation Technology(No.JDGA2020-7)the National Natural Science Foundation of China(No.62173237)+3 种基金the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Talent Project of Revitalization Liaoning Province(No.XLYC1907022)the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the High-Level Innovation Talent Project of Shenyang(No.RC190030).
文摘Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application.
基金supported by National Natural Science Foundationof China (Grant No. 51874300)the National Natural Science Foundation of China andShanxi Provincial People’s Government Jointly Funded Project of China for Coal Baseand Low Carbon (Grant No. U1510115)+2 种基金National Natural Science Foundation of China(51104157)the Qing Lan Project, the China Postdoctoral Science Foundation (Grant No.2013T60574)the Scientific Instrument Developing Project of the Chinese Academy ofSciences (Grant No. YJKYYQ20170074).
文摘Video object tracking is an important research topic of computer vision, whichfinds a wide range of applications in video surveillance, robotics, human-computerinteraction and so on. Although many moving object tracking algorithms have beenproposed, there are still many difficulties in the actual tracking process, such asillumination change, occlusion, motion blurring, scale change, self-change and so on.Therefore, the development of object tracking technology is still challenging. Theemergence of deep learning theory and method provides a new opportunity for theresearch of object tracking, and it is also the main theoretical framework for the researchof moving object tracking algorithm in this paper. In this paper, the existing deeptracking-based target tracking algorithms are classified and sorted out. Based on theprevious knowledge and my own understanding, several solutions are proposed for theexisting methods. In addition, the existing deep learning target tracking method is stilldifficult to meet the requirements of real-time, how to design the network and trackingprocess to achieve speed and effect improvement, there is still a lot of research space.
基金Supported by the National Natural Science Foundation of China (No. 60672094)
文摘If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if the object goes beyond the limits of mean shift snake module operation in suc- cessive sequences, mean shift snake's nodes may also fall into the local minima in their moving to the new object position. This paper presents a motion compensation strategy by using particle filter; therefore a new Particle Filter Mean Shift Snake (PFMSS) algorithm is proposed which combines particle filter with mean shift snake to fulfill the estimation of the fast moving object contour. Firstly, the fast moving object is tracked by particle filter to create a coarse position which is used to initialize the mean shift algorithm. Secondly, the whole relevant motion information is used to compensate the snake's node positions. Finally, snake algorithm is used to extract the exact object contour and the useful information of the object is fed back. Some real world sequences are tested and the results show that the novel tracking method have a good performance with high accuracy in solving the fast moving problems in cluttered background.
文摘On accomplishing an efficacious object tracking,the activity of an object concerned becomes notified in a forthright manner.An accurate form of object tracking task necessitates a robust object tracking procedures irrespective of hardware assistance.Such approaches inferred a vast computational complexity to track an object with high accuracy in a stipulated amount of processing time.On the other hand,the tracking gets affected owing to the existence of varied quality diminishing factors such as occlusion,illumination changes,shadows etc.,In order to rectify all these inadequacies in tracking an object,a novel background normalization procedure articulated on the basis of a textural pattern is proposed in this paper.After preprocessing an acquired image,employment of an Environmental Succession Prediction algorithm for discriminating disparate background environment by background clustering approach have been accomplished.Afterward,abstract textural characterizations through utilization of a Probability based Gradient Pattern(PGP)approach for recognizing the similarity between patterns obtained so far.Comparison between standardized frame obtained in prior and those processed patterns detects the motion exposed by an object and the object concerned gets identified within a blob.Hence,the system is resistant towards illumination variations.These illumination variation was interpreted in object tracking residing within a dynamic background.Devised approach certainly outperforms other object tracking methodologies like Group Target Tracking(GTT),Vi PER-GT,grabcut,snakes in terms of accuracy and average time.Proposed PGP-based pattern texture analysis is compared with Gamifying Video Object(GVO)approach and hence,it evidently outperforms in terms of precision,recall and F1 measure.
文摘This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process.A reinforcement learning(RL)agent successfully tracks an interface between two liquids,which is often a critical variable to track in many chemical,petrochemical,metallurgical,and oil industries.This method utilizes less than 100 images for creating an environment,from which the agent generates its own data without the need for expert knowledge.Unlike supervised learning(SL)methods that rely on a huge number of parameters,this approach requires far fewer parameters,which naturally reduces its maintenance cost.Besides its frugal nature,the agent is robust to environmental uncertainties such as occlusion,intensity changes,and excessive noise.From a closed-loop control context,an interface location-based deviation is chosen as the optimization goal during training.The methodology showcases RL for real-time object-tracking applications in the oil sands industry.Along with a presentation of the interface tracking problem,this paper provides a detailed review of one of the most effective RL methodologies:actor–critic policy.
基金funded by the National Natural Science Foundation of China(Grant No.52072408),author Y.C.
文摘Onboard visual object tracking in unmanned aerial vehicles(UAVs)has attractedmuch interest due to its versatility.Meanwhile,due to high precision,Siamese networks are becoming hot spots in visual object tracking.However,most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs.To meet the tracking precision and real-time requirements,this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL.Specifically,the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network,then performs correlationmatching to obtain the candidate regionwith high similarity.To improve the matching effect of template and search features,this paper designs a dense pixel-level feature fusion module to enhance the matching ability by pixel-wise correlation and enrich the feature diversity by dense connection.An attention module composed of self-attention and channel attention is introduced to learn global context information and selectively emphasize the target feature region in the spatial and channel dimensions.In addition,a target localization module is designed to improve target location accuracy.Compared with other advanced trackers,experiments on two public benchmarks,which are UAV123@10fps and UAV20L fromthe unmanned air vehicle123(UAV123)dataset,show that SiamDPL can achieve superior performance and low complexity with a running speed of 100.1 fps on NVIDIA TITAN RTX.