期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Oriented Bounding Box Object Detection Model Based on Improved YOLOv8
1
作者 ZHAO Xin-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期67-75,114,共10页
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ... In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes. 展开更多
关键词 Remote sensing image Oriented bounding boxes object detection Small target detection YOLOv8
下载PDF
An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images 被引量:1
2
作者 Sihang Zhang Zhenfeng Shao +2 位作者 Xiao Huang Linze Bai Jiaming Wang 《Geo-Spatial Information Science》 SCIE EI CSCD 2021年第4期654-665,共12页
Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either ... Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers,leading to increased computational demand and reduced detection speeds.In this study,we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images.For the internal opti-mization,we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks.The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer.For the external optimiza-tion,we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes.Experimental results on the DOTA and HRSC2016 bench-mark datasets show that our proposed method outperforms selected methods. 展开更多
关键词 Arbitrary orientated object detection optical remote sensing image single-shot deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部