Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously anal...Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.展开更多
The most important optical component in an optical fiber endoscope is its objective lens.To achieve a high imaging performance level,the development of an ultra-compact objective lens is thus the key to an ultra-thin ...The most important optical component in an optical fiber endoscope is its objective lens.To achieve a high imaging performance level,the development of an ultra-compact objective lens is thus the key to an ultra-thin optical fiber endoscope.In this work,we use femtosecond laser 3D printing to develop a series of micro objective lenses with different optical designs.The imaging resolution and field-of-view performances of these printed micro objective lenses are investigated via both simulations and experiments.For the first time,multiple micro objective lenses with different fields of view are printed on the end face of a single imaging optical fiber,thus realizing the perfect integration of an optical fiber and objective lenses.This work demonstrates the considerable potential of femtosecond laser 3D printing in the fabrication of micro-optical systems and provides a reliable solution for the development of an ultrathin fiber endoscope.展开更多
基金supported by National Key R&D Program of China(grant no.2022YFC2404201)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(grant no.YSBR067).
文摘Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view,typically around 1 mm.This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample,such as different brain areas.In addition,conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm,a numerical aperture of 0.5,and a working wavelength range from 400 to 1000 nm.We achieved a resolution of 0.74μm in fluorescent beads imaging.The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system,a confocal laser scanning system,and a two-photon imaging system.This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.
基金This work was supported by Shenzhen Science and Technology Program(RCYX20200714114524139,Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing ZDSYS20220606100405013)Natural Science Foundation of Guangdong Province(2022B1515120061)National Natural Science Foundation of China(62122057,62075136).
文摘The most important optical component in an optical fiber endoscope is its objective lens.To achieve a high imaging performance level,the development of an ultra-compact objective lens is thus the key to an ultra-thin optical fiber endoscope.In this work,we use femtosecond laser 3D printing to develop a series of micro objective lenses with different optical designs.The imaging resolution and field-of-view performances of these printed micro objective lenses are investigated via both simulations and experiments.For the first time,multiple micro objective lenses with different fields of view are printed on the end face of a single imaging optical fiber,thus realizing the perfect integration of an optical fiber and objective lenses.This work demonstrates the considerable potential of femtosecond laser 3D printing in the fabrication of micro-optical systems and provides a reliable solution for the development of an ultrathin fiber endoscope.