期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Observation of Complex Organic Molecules Containing Peptide-like Bonds Toward Hot Core G358.93-0.03 MM1
1
作者 Arijit Manna Sabyasachi Pal 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第7期181-189,共9页
In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past f... In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past few decades,many COMs containing peptide-like bonds have been detected in hot molecular cores(HMCs),hot corinos,and cold molecular clouds,however,their prebiotic chemistry is poorly understood.We present the first detection of the rotational emission lines of formamide(NH_2CHO)and isocyanic acid(HNCO),which contain peptide-like bonds toward the chemically rich HMC G358.93-0.03 MM1,using high-resolution and high-sensitivity Atacama Large Millimeter/submillimeter Array bands 6 and 7.We estimate that the column densities of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(2.80±0.29)×10~(15)cm~(-2)and(1.80±0.42)×10~(16)cm~(-2)with excitation temperatures of 165±21 K and 170±32 K,respectively.The fractional abundances of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(9.03±1.44)×10~(-10)and(5.80±2.09)×10^(-9).We compare the estimated abundances of NH_2CHO and HNCO with the existing threephase warm-up chemical model abundance values and notice that the observed and modeled abundances are very close.We conclude that NH_2CHO is produced by the reaction of NH_2and H_2CO in the gas phase toward G358.93-0.03 MM1.Likewise,HNCO is produced on the surface of grains by the reaction of NH and CO toward G358.93-0.03 MM1.We also find that NH_2CHO and HNCO are chemically linked toward G358.93-0.03 MM1. 展开更多
关键词 ISM individual objects(g358.93-0.03)-ism abundances-ism kinematics and dynamics-stars formation-astrochemistry
下载PDF
Gas infall in the massive star formation core G192.16–3.84 被引量:1
2
作者 Meng-Yao Tang Sheng-Li Qin +1 位作者 Tie Liu Yue-Fang Wu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第3期71-78,共8页
Previous observations have revealed an accretion disk and outflow motion in the high-mass starforming region G192.16–3.84, but collapse has not been reported before. Here we present molecular line and continuum obser... Previous observations have revealed an accretion disk and outflow motion in the high-mass starforming region G192.16–3.84, but collapse has not been reported before. Here we present molecular line and continuum observations toward the massive core G192.16–3.84 with the Submillimeter Array. C18 O(2–1) and HCO+(3–2) lines show pronounced blue profiles, indicating gas infalling in this region. This is the first time that infall motion has been reported in the G192.16–3.84 core. Two-layer model fitting gives infall velocities of 2.0±0.2 and 2.8±0.1 km s-1. Assuming that the cloud core follows a power-law density profile(ρ∝ r1.5), the corresponding mass infall rates are(4.7±1.7)×10-3 and(6.6±2.1)×10-3 M⊙yr-1 for C18 O(2–1) and HCO+(3–2), respectively. The derived infall rates are in agreement with the turbulent core model and those in other high-mass star-forming regions, suggesting that high accretion rate is a general requirement for forming a massive star. 展开更多
关键词 ISM INDIVIDUAL objects(g192.16-3.84)-ism molecules-stars formation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部