This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how...This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how certain urban objects can act as emotional agents and how these events affect the urban system as a whole.An adaptive complex systems perspective is used to analyze these patterns.The results show patterns in the processes and dynamics that occur in cities based on the objects that affect the emotions of the people who live there.These patterns depend on the characteristics of the emotional charge of urban objects,but they can be generalized in the following process:(1)immediate reaction by some individuals;(2)emotions are generated at the individual level which begins to generalize,permuting to a collective emotion;(3)a process of reflection is detonated in some individuals from the reading of collective emotions;(4)integration/significance in the community both at the individual and collective level,on the concepts,roles and/or functions that give rise to the process in the system.Therefore,it is clear that emotions play a significant role in the development of cities and these aspects should be considered in the design strategies of all kinds of projects for the city.Future extensions of this work could include a deeper analysis of specific emotional events in urban environments,as well as possible implications for urban policy and decision making.展开更多
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable...Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati...Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.展开更多
Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple compleme...Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources.展开更多
Introduction: Cranioencephalic trauma caused by bladed weapons is rare, and that caused by sharp objects is exceptional. The aim of our study was to describe the clinical, therapeutic and evolutionary aspects. Materia...Introduction: Cranioencephalic trauma caused by bladed weapons is rare, and that caused by sharp objects is exceptional. The aim of our study was to describe the clinical, therapeutic and evolutionary aspects. Materials and method: This was a descriptive and analytical study over a 48-month period at CHU la Renaissance from January 1, 2018 to December 31, 2021, concerning patients admitted for penetrating cranioencephalic trauma by pointed object. Results: Twelve cases, all male, of penetrating cranioencephalic sharp-force trauma were identified. The mean age was 34 ± 7 years, with extremes of 11 and 60 years. Farmers and herders accounted for 31% and 25% of cases respectively. The average admission time was 47 hours. Brawls were the circumstances of occurrence in 81.2% of cases. Knives (33%), arrows (25%) and iron bars (16.6%) were the objects used. Altered consciousness was present in 43.8% of cases, and focal deficit in 50%. Scannographic lesions were fracture and/or embarrhment (12 cases), intra-parenchymal haematomas (6 cases) and presence of object in place (4 cases). Surgery was performed in 11 patients. Postoperative outcome was favorable in 9 patients. After 12 months, 2 patients were declared unfit. Conclusion: Penetrating head injuries caused by sharp objects are common in Chad. Urgent surgery can prevent disabling after-effects.展开更多
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst...In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance.展开更多
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ...This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.展开更多
An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method...An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.展开更多
In this paper,the open-sourced computational fluid dynamics software,OpenFOAM~?,is used to study the fluctuation phenomenon of the water body inside a horizontally one-dimensional enclosed harbor basin with constant w...In this paper,the open-sourced computational fluid dynamics software,OpenFOAM~?,is used to study the fluctuation phenomenon of the water body inside a horizontally one-dimensional enclosed harbor basin with constant water depth triggered by falling wedges with various horizontal falling positions,initial falling velocities and masses.Based on both Fourier transfo rm analysis and wavelet spectrum analysis for the time series of the free surface elevations inside the harbor basin,it is found for the first time that the wedge falling inside the harbor can directly trigger harbor resonance.The influences of the three factors(including the horizontal falling position,the initial falling velocity,and the mass)on the response amplitudes of the lowest three resonant modes are also investigated.The results show that when the wedge falls on one of the nodal points of a resonant mode,the mode would be remarkably suppressed.Conversely,when the wedge falls on one of the anti-nodal points of a resonant mode,the mode would be evidently triggered.The initial falling velocity of the wedge mainly has a remarkable effect on the response amplitude of the most significant mode,and the latter shows a gradual increase trend with the increase of the former.While for the other two less significant modes,their response amplitudes fluctuate around certain constant values as the initial falling velocity rises.In general,the response amplitudes of all the lowest three modes are shown to gradually increase with the mass of the wedge.展开更多
Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.Ho...Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection.展开更多
Take a digital libraries' service system for example, Objects Served Relationship Management (OSRM) in complex systems is proposed firstly as a new concept, and its connotation is explained. The significances and c...Take a digital libraries' service system for example, Objects Served Relationship Management (OSRM) in complex systems is proposed firstly as a new concept, and its connotation is explained. The significances and constructions of OSRM are analyzed. Both the fundamental facts and the important natures that the things which are interested by Objects Served (OS) (e. g. publishers and readers) and the server (e. g. digital libraries are the servers of publishers and readers) will not be the same completely although there are a lot of common benefits between OS and servers, are indeed clarified. The valuable information,which should be used by OS and their server, is often hidden behind them. Thus, how to find, manage and control the relationship among OS and their servers is very necessary and important for the common benefits among all of them.(e. g. the three dimensions of OSRM in digital library system and its overall framwork are proposed. The different strategies to different cases in the digital library's multidimensional framework are analyzed.)展开更多
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent...Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.展开更多
Based on the integration of C#.net and SuperMap Objects(tool software of component GIS),the management system of regional pollution source is developed.It mainly includes the demand analysis of system,function design,...Based on the integration of C#.net and SuperMap Objects(tool software of component GIS),the management system of regional pollution source is developed.It mainly includes the demand analysis of system,function design,database construction,program design and concrete realization in the management aspect of pollution source.展开更多
Press & Publishing Journal (PPJ),March 6,1991:Upon PPJ edit-orial office's request,Institute of Scientific and Technological lnfor-mation of China (ISTTC) made a survey on the situation that how manytheses fro...Press & Publishing Journal (PPJ),March 6,1991:Upon PPJ edit-orial office's request,Institute of Scientific and Technological lnfor-mation of China (ISTTC) made a survey on the situation that how manytheses from China scientific and technological journals have been sele-cted by the 6 most important search systems (Science Literature Index,展开更多
The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video ind...The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.展开更多
Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployabl...Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployable small unmanned aerial systems(s UAS)in conjunction with powerful deep learning(DL)based object detection models are expected to play an important role for this application.To prove overall feasibility of this approach,this paper discusses some aspects of designing and testing of an automated detection system to locate and identify small firearms left at the training range or at the battlefield.Such a system is envisioned to involve an s UAS equipped with a modern electro-optical(EO)sensor and relying on a trained convolutional neural network(CNN).Previous study by the authors devoted to finding projectiles on the ground revealed certain challenges such as small object size,changes in aspect ratio and image scale,motion blur,occlusion,and camouflage.This study attempts to deal with these challenges in a realistic operational scenario and go further by not only detecting different types of firearms but also classifying them into different categories.This study used a YOLOv2CNN(Res Net-50 backbone network)to train the model with ground truth data and demonstrated a high mean average precision(m AP)of 0.97 to detect and identify not only small pistols but also partially occluded rifles.展开更多
Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be con...Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).展开更多
Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for tradition...Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing.展开更多
A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the ...A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.展开更多
文摘This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how certain urban objects can act as emotional agents and how these events affect the urban system as a whole.An adaptive complex systems perspective is used to analyze these patterns.The results show patterns in the processes and dynamics that occur in cities based on the objects that affect the emotions of the people who live there.These patterns depend on the characteristics of the emotional charge of urban objects,but they can be generalized in the following process:(1)immediate reaction by some individuals;(2)emotions are generated at the individual level which begins to generalize,permuting to a collective emotion;(3)a process of reflection is detonated in some individuals from the reading of collective emotions;(4)integration/significance in the community both at the individual and collective level,on the concepts,roles and/or functions that give rise to the process in the system.Therefore,it is clear that emotions play a significant role in the development of cities and these aspects should be considered in the design strategies of all kinds of projects for the city.Future extensions of this work could include a deeper analysis of specific emotional events in urban environments,as well as possible implications for urban policy and decision making.
基金State Grid Jiangsu Electric Power Co.,Ltd.of the Science and Technology Project(Grant No.J2022004).
文摘Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.
基金supported in part by the National Natural Science Foundation of China (62073271)the Natural Science Foundation for Distinguished Young Scholars of the Fujian Province of China (2023J06010)the Fundamental Research Funds for the Central Universities of China(20720220076)。
文摘Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
基金supported by the National Natural Science Foundation of China under Grant 51567002 and Grant 50767001.
文摘Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources.
文摘Introduction: Cranioencephalic trauma caused by bladed weapons is rare, and that caused by sharp objects is exceptional. The aim of our study was to describe the clinical, therapeutic and evolutionary aspects. Materials and method: This was a descriptive and analytical study over a 48-month period at CHU la Renaissance from January 1, 2018 to December 31, 2021, concerning patients admitted for penetrating cranioencephalic trauma by pointed object. Results: Twelve cases, all male, of penetrating cranioencephalic sharp-force trauma were identified. The mean age was 34 ± 7 years, with extremes of 11 and 60 years. Farmers and herders accounted for 31% and 25% of cases respectively. The average admission time was 47 hours. Brawls were the circumstances of occurrence in 81.2% of cases. Knives (33%), arrows (25%) and iron bars (16.6%) were the objects used. Altered consciousness was present in 43.8% of cases, and focal deficit in 50%. Scannographic lesions were fracture and/or embarrhment (12 cases), intra-parenchymal haematomas (6 cases) and presence of object in place (4 cases). Surgery was performed in 11 patients. Postoperative outcome was favorable in 9 patients. After 12 months, 2 patients were declared unfit. Conclusion: Penetrating head injuries caused by sharp objects are common in Chad. Urgent surgery can prevent disabling after-effects.
文摘In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance.
文摘This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.
基金supported by the National Natural Science Foundation of China(60835004 60775047+2 种基金 60872130)the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)
文摘An object model-based tracking method is useful for tracking multiple objects, but the main difficulties are modeling objects reliably and tracking objects via models in successive frames. An effective tracking method using the object models is proposed to track multiple objects in a real-time visual surveillance system. Firstly, for detecting objects, an adaptive kernel density estimation method is utilized, which uses an adaptive bandwidth and features combining colour and gradient. Secondly, some models of objects are built for describing motion, shape and colour features. Then, a matching matrix is formed to analyze tracking situations. If objects are tracked under occlusions, the optimal "visual" object is found to represent the occluded object, and the posterior probability of pixel is used to determine which pixel is utilized for updating object models. Extensive experiments show that this method improves the accuracy and validity of tracking objects even under occlusions and is used in real-time visual surveillance systems.
基金financially supported by the National Natural Science Foundation of China (Grant No.51911530205)the Natural Science Foundation of Jiangsu Province (Grant No.BK20201455)+5 种基金the Guangdong Basic and Applied Basic Research Foundation (Grant No.2023A1515010890)the Key Laboratory of PortWaterway and Sedimentation Engineering of MOT (Grant No.YK222001-2)the Open Research Fund of Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources (Grant No.WSGBAKJ202309)the Qing Lan Project of Jiangsu Universitiesthe Royal Society (Grant No.IECNSFC181321)。
文摘In this paper,the open-sourced computational fluid dynamics software,OpenFOAM~?,is used to study the fluctuation phenomenon of the water body inside a horizontally one-dimensional enclosed harbor basin with constant water depth triggered by falling wedges with various horizontal falling positions,initial falling velocities and masses.Based on both Fourier transfo rm analysis and wavelet spectrum analysis for the time series of the free surface elevations inside the harbor basin,it is found for the first time that the wedge falling inside the harbor can directly trigger harbor resonance.The influences of the three factors(including the horizontal falling position,the initial falling velocity,and the mass)on the response amplitudes of the lowest three resonant modes are also investigated.The results show that when the wedge falls on one of the nodal points of a resonant mode,the mode would be remarkably suppressed.Conversely,when the wedge falls on one of the anti-nodal points of a resonant mode,the mode would be evidently triggered.The initial falling velocity of the wedge mainly has a remarkable effect on the response amplitude of the most significant mode,and the latter shows a gradual increase trend with the increase of the former.While for the other two less significant modes,their response amplitudes fluctuate around certain constant values as the initial falling velocity rises.In general,the response amplitudes of all the lowest three modes are shown to gradually increase with the mass of the wedge.
文摘Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection.
文摘Take a digital libraries' service system for example, Objects Served Relationship Management (OSRM) in complex systems is proposed firstly as a new concept, and its connotation is explained. The significances and constructions of OSRM are analyzed. Both the fundamental facts and the important natures that the things which are interested by Objects Served (OS) (e. g. publishers and readers) and the server (e. g. digital libraries are the servers of publishers and readers) will not be the same completely although there are a lot of common benefits between OS and servers, are indeed clarified. The valuable information,which should be used by OS and their server, is often hidden behind them. Thus, how to find, manage and control the relationship among OS and their servers is very necessary and important for the common benefits among all of them.(e. g. the three dimensions of OSRM in digital library system and its overall framwork are proposed. The different strategies to different cases in the digital library's multidimensional framework are analyzed.)
基金the Office of Naval Research for supporting this effort through the Consortium for Robotics and Unmanned Systems Education and Research。
文摘Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.
文摘Based on the integration of C#.net and SuperMap Objects(tool software of component GIS),the management system of regional pollution source is developed.It mainly includes the demand analysis of system,function design,database construction,program design and concrete realization in the management aspect of pollution source.
文摘Press & Publishing Journal (PPJ),March 6,1991:Upon PPJ edit-orial office's request,Institute of Scientific and Technological lnfor-mation of China (ISTTC) made a survey on the situation that how manytheses from China scientific and technological journals have been sele-cted by the 6 most important search systems (Science Literature Index,
文摘The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.
文摘Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployable small unmanned aerial systems(s UAS)in conjunction with powerful deep learning(DL)based object detection models are expected to play an important role for this application.To prove overall feasibility of this approach,this paper discusses some aspects of designing and testing of an automated detection system to locate and identify small firearms left at the training range or at the battlefield.Such a system is envisioned to involve an s UAS equipped with a modern electro-optical(EO)sensor and relying on a trained convolutional neural network(CNN).Previous study by the authors devoted to finding projectiles on the ground revealed certain challenges such as small object size,changes in aspect ratio and image scale,motion blur,occlusion,and camouflage.This study attempts to deal with these challenges in a realistic operational scenario and go further by not only detecting different types of firearms but also classifying them into different categories.This study used a YOLOv2CNN(Res Net-50 backbone network)to train the model with ground truth data and demonstrated a high mean average precision(m AP)of 0.97 to detect and identify not only small pistols but also partially occluded rifles.
文摘Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).
基金This research was supported by the Chung-Ang University Graduate Research Scholarship in 2021.This study was carried out with the support of‘R&D Program for Forest Science Technology(Project No.2021338C10-2223-CD02)’provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Recently,research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase.Physical expansion limits exist for traditional standalone storage systems,such as I/O and file system capacity.However,the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location.And this leads to system performance degradation due to low locality occurring in a Wide Area Network(WAN)environment with high network latency.This problem hinders deploying distributed storage systems to multiple data centers over WAN.It lowers the scalability of distributed storage systems to accommodate data storage needs.This paper proposes a method for distributing data in a WAN environment considering network latency and data locality to solve this problem and increase overall system performance.The proposed distributed storage method monitors data utilization and locality to classify data temperature as hot,warm,and cold.With assigned data temperature,the proposed algorithm adaptively selects the appropriate data center and places data accordingly to overcome the excess latency from the WAN environment,leading to overall system performance degradation.This paper also conducts simulations to evaluate the proposed and existing distributed storage methods.The result shows that our proposed method reduced latency by 38%compared to the existing method.Therefore,the proposed method in this paper can be used in large-scale distributed storage systems over a WAN environment to improve latency and performance compared to existing methods,such as consistent hashing.
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-004).
文摘A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.