The uniaxial magnetic anisotropy of obliquely deposited Fe(001)/Pd film on MgO(001) substrate is investigated as a function of deposition angle and film thickness. The values of incidence angle of Fe flux relative...The uniaxial magnetic anisotropy of obliquely deposited Fe(001)/Pd film on MgO(001) substrate is investigated as a function of deposition angle and film thickness. The values of incidence angle of Fe flux relative to surface normal of the substrate are 0°, 45°, 55°, and 70°, respectively. In-situ low energy electron diffraction is employed to investigate the surface structures of the samples. The Fe film thicknesses are determined to be 50 ML, 45 ML, 32 ML, and 24 ML(1 ML = 0.14 nm) by performing x-ray reflectivity on the grown samples, respectively. The normalized remanent magnetic saturation ratio and coercivity are obtained by the longitudinal surface magneto-optical Kerr effect. Here, the magnetic anisotropy constants are quantitatively determined by fitting the anisotropic magnetoresistance curves under different fields.These measurements show four-fold cubic anisotropy in a large Fe film thickness(50 ML) sample, but highly in-plane uniaxial magnetic anisotropies in thin films(24 ML and 32 ML) samples. In the obliquely deposited Fe films, the coercive fields and the uniaxial magnetic anisotropies(UMAs) increase as the deposition angle becomes more and more tilted. In addition, the UMA decreases with the increase of the Fe film thickness. Our work provides the possibility of manipulating uniaxial magnetic anisotropy, and paves the way to inducing UMA by oblique deposition with smaller film thickness.展开更多
We present a systematic investigation of magnetic anisotropy induced by oblique deposition of Co thin films on MgO(001) substrates by molecular beam epitaxy at different deposition angles,i.e.,0?,30?,45?,60?,and...We present a systematic investigation of magnetic anisotropy induced by oblique deposition of Co thin films on MgO(001) substrates by molecular beam epitaxy at different deposition angles,i.e.,0?,30?,45?,60?,and 75?with respect to the surface normal.Low energy electron diffraction(LEED),surface magneto–optical Kerr effect(SMOKE),and anisotropic magnetoresistance(AMR) setups were employed to investigate the magnetic properties of cobalt films.The values of in-plane uniaxial magnetic anisotropy(UMA) constant Ku and four-fold magnetocrystalline anisotropy constant K1 were derived from magnetic torque curves on the base of AMR results.It was found that the value of Ku increases with increasing deposition angle with respect to the surface normal,while the value of K_1 remains almost constant for all the samples.Furthermore,by using MOKE results,the Ku values of the films deposited obliquely were also derived from the magnetization curves along hard axis.The results of AMR method were then compared with that of hard axis fitting method(coherent rotation) and found that both methods have almost identical values of UMA constant for each sample.展开更多
Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination...Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.展开更多
Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting appli- cations recently. Those applications usually require a good morphological and structural control of metallic nanostructur...Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting appli- cations recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.展开更多
As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive,...As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.展开更多
A slanted columnar TiO2 sculptured anisotropic thin film is prepared using the glancing angle deposition(GLAD) technique. We extend the inference regarding the optical properties of a uniaxial birefringent film based ...A slanted columnar TiO2 sculptured anisotropic thin film is prepared using the glancing angle deposition(GLAD) technique. We extend the inference regarding the optical properties of a uniaxial birefringent film based on theoretical analysis to include the more general case of a multilayer biaxial birefringent thin film, the optic axis of which is in the incident plane. We also investigate in detail the symmetrical angularselective transmittance performances of TiO2 biaxial anisotropic thin films for light incident at the same angle but coming from opposite sides of the surface normal. The tilted nanocolumn microstructures of the birefringent thin films induce optical anisotropy. The transmisson spectra for the p-polarized wave of TiO2 biaxial anisotropic thin film measured in the experiment almost overlap at the symmetrical oblique incidence at the ±θ 0 angles, which validates our theoretical derivation.展开更多
Here,we present integrated nanorod arrays on microfluidic chips for fast and sensitive flow-through immunoassays of physiologically relevant macromolecules.Dense arrays of Au nanorods are easily fabricated through one...Here,we present integrated nanorod arrays on microfluidic chips for fast and sensitive flow-through immunoassays of physiologically relevant macromolecules.Dense arrays of Au nanorods are easily fabricated through one-step oblique angle deposition,which eliminates the requirement of advanced lithography methods.We report the utility of this plasmonic structure to improve the detection limit of the cardiac troponin I(cTnI)assay by over 6x 105-fold,reaching down to 33.9fg mL^(-1)(-1.4fM) compared with an identical assay on glass substrates.Through monolithic integration with microfluidic elements,the device enables a flow-through assay for quantitative detection of cTnI in the serum with a detection sensitivity of 6.9 pg mL^(-1)(-0.3 pM)in<6 min,which was 4000 times lower than conventional glass devices.This ultrasensitive detection arises from the large surface area for antibody conjugation and metal-enhanced fluorescent signals through plasmonic nanostructures.Moreover,due to the parallel arrangement of flow paths,simultaneous detection of multiple cancer biomarkers,including prostate-specific antigen and carcinoembryonic antigen,has been fulfilled with increased signal-to-background ratios.Given the high performance of this assay,together with its simple fabrication process that is compatible with standard mass manufacturing techniques,we expect that the prepared integrated nanorod device can bring on-site point-of-care diagnosis closer to reality.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921403 and 2016YFA0300701)the National Natural Science Foundation of China(Grant Nos.51427801,11374350,and 51671212)the Chinese Government Scholarship(Grant No.2015GXYG37)
文摘The uniaxial magnetic anisotropy of obliquely deposited Fe(001)/Pd film on MgO(001) substrate is investigated as a function of deposition angle and film thickness. The values of incidence angle of Fe flux relative to surface normal of the substrate are 0°, 45°, 55°, and 70°, respectively. In-situ low energy electron diffraction is employed to investigate the surface structures of the samples. The Fe film thicknesses are determined to be 50 ML, 45 ML, 32 ML, and 24 ML(1 ML = 0.14 nm) by performing x-ray reflectivity on the grown samples, respectively. The normalized remanent magnetic saturation ratio and coercivity are obtained by the longitudinal surface magneto-optical Kerr effect. Here, the magnetic anisotropy constants are quantitatively determined by fitting the anisotropic magnetoresistance curves under different fields.These measurements show four-fold cubic anisotropy in a large Fe film thickness(50 ML) sample, but highly in-plane uniaxial magnetic anisotropies in thin films(24 ML and 32 ML) samples. In the obliquely deposited Fe films, the coercive fields and the uniaxial magnetic anisotropies(UMAs) increase as the deposition angle becomes more and more tilted. In addition, the UMA decreases with the increase of the Fe film thickness. Our work provides the possibility of manipulating uniaxial magnetic anisotropy, and paves the way to inducing UMA by oblique deposition with smaller film thickness.
基金Project supported by the Chinese Academy of Sciences–The World Academy of Sciences(CAS–TWAS)Fellowship Programthe National Basic ResearcProgram of China(Grant Nos.2015CB921403 and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.51427801,1137435and 11274361)
文摘We present a systematic investigation of magnetic anisotropy induced by oblique deposition of Co thin films on MgO(001) substrates by molecular beam epitaxy at different deposition angles,i.e.,0?,30?,45?,60?,and 75?with respect to the surface normal.Low energy electron diffraction(LEED),surface magneto–optical Kerr effect(SMOKE),and anisotropic magnetoresistance(AMR) setups were employed to investigate the magnetic properties of cobalt films.The values of in-plane uniaxial magnetic anisotropy(UMA) constant Ku and four-fold magnetocrystalline anisotropy constant K1 were derived from magnetic torque curves on the base of AMR results.It was found that the value of Ku increases with increasing deposition angle with respect to the surface normal,while the value of K_1 remains almost constant for all the samples.Furthermore,by using MOKE results,the Ku values of the films deposited obliquely were also derived from the magnetization curves along hard axis.The results of AMR method were then compared with that of hard axis fitting method(coherent rotation) and found that both methods have almost identical values of UMA constant for each sample.
基金supported by the Project No.CB/2012/178748 CONACYT/México
文摘Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.
文摘Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting appli- cations recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.16KJB510009 and No.17KJB510017)Jiangsu Province Natural Science Foundation of China (BK20150228)
文摘As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.
基金supported by the National Natural Science Foundation of China under Grant No.61205211
文摘A slanted columnar TiO2 sculptured anisotropic thin film is prepared using the glancing angle deposition(GLAD) technique. We extend the inference regarding the optical properties of a uniaxial birefringent film based on theoretical analysis to include the more general case of a multilayer biaxial birefringent thin film, the optic axis of which is in the incident plane. We also investigate in detail the symmetrical angularselective transmittance performances of TiO2 biaxial anisotropic thin films for light incident at the same angle but coming from opposite sides of the surface normal. The tilted nanocolumn microstructures of the birefringent thin films induce optical anisotropy. The transmisson spectra for the p-polarized wave of TiO2 biaxial anisotropic thin film measured in the experiment almost overlap at the symmetrical oblique incidence at the ±θ 0 angles, which validates our theoretical derivation.
基金supported by the National Natural Science Foundation of China(Grant No.61701438)Shanghai Science and Technology Commission’s Scientific and Technological Innovation Action Plan(No.19495810300)+2 种基金Fundamental Research Funds for the Central Universities,China(Grant No.2020XZZX002-13)Zhejiang Province Key R&D programs(Nos.2020C03039,2020C01120,2021C03062,and 2021C03108)Science and Technology Service Network Initiative(STS)of the Chinese Academy of Sciences(No.KFJ-STS-QYZX-061).
文摘Here,we present integrated nanorod arrays on microfluidic chips for fast and sensitive flow-through immunoassays of physiologically relevant macromolecules.Dense arrays of Au nanorods are easily fabricated through one-step oblique angle deposition,which eliminates the requirement of advanced lithography methods.We report the utility of this plasmonic structure to improve the detection limit of the cardiac troponin I(cTnI)assay by over 6x 105-fold,reaching down to 33.9fg mL^(-1)(-1.4fM) compared with an identical assay on glass substrates.Through monolithic integration with microfluidic elements,the device enables a flow-through assay for quantitative detection of cTnI in the serum with a detection sensitivity of 6.9 pg mL^(-1)(-0.3 pM)in<6 min,which was 4000 times lower than conventional glass devices.This ultrasensitive detection arises from the large surface area for antibody conjugation and metal-enhanced fluorescent signals through plasmonic nanostructures.Moreover,due to the parallel arrangement of flow paths,simultaneous detection of multiple cancer biomarkers,including prostate-specific antigen and carcinoembryonic antigen,has been fulfilled with increased signal-to-background ratios.Given the high performance of this assay,together with its simple fabrication process that is compatible with standard mass manufacturing techniques,we expect that the prepared integrated nanorod device can bring on-site point-of-care diagnosis closer to reality.