Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-functi...Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-function expansion method is applied to expanding velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with other theories and a good agreement can be found between them. Experimental data have been compared with the present theoretical results. The effect of the traverse wall on wave forces has been discussed in detail. On the basis of the linear wave theory, it is shown that in the range Of engineering practice, the incident angle of wave has small influence on wave forces on the unit length of perforated caisson.展开更多
Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This pape...Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This paper takes oblique planing and helix milling of wood as examples. The influences of bevel angle and other factors on the cutting force have been shown. The changing rules of cutting forces have been summarized. On the basis of it, we especially carried out theoretical analysis on the changing rules of cutting forces and discussed the influence of the changing rules on practice.展开更多
In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sen...In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis.展开更多
A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC....A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.展开更多
Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on a...Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.展开更多
Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched...Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched eigenfunction expansion method and a least square approach, the analytical solutions are sought for the established boundary value problem. The effects of the incidence angle, location of step, depth ratio of deep to shallow waters,and column width between two plates, on the reflection coefficients, the horizontal wave forces acting on the two plates, and the mean surface elevation between the two plates, are numerically examined under a variety of wave conditions. The results show that the existence of the stepped bottom between two plates considerably impacts the hydrodynamic performances of the present system. It is found that the effect of stepped bottom on the reflection coefficient of the present two-plate structure is evident only with waves of the low dimensionless frequency.Moreover, the influence of the step location on the hydrodynamic performance of the present two-plate structure is slight if the step is placed in between the two plates.展开更多
Regular and irregular wave forces acting on vertical walls are studied by a previously developed numerical model. The computed wave forces are compared with the available experimental data to verify the numerical mode...Regular and irregular wave forces acting on vertical walls are studied by a previously developed numerical model. The computed wave forces are compared with the available experimental data to verify the numerical model, and satisfactory agreements are obtained. The variation of wave forces with incident angles and the shape of simultaneous pressure distribution are investigated, and the comparisons between numerical results and Goda' s predictions are also carried out. It is concluded that the maximum wave forces acting on the unit length of vertical wall is often induced by the obliquely incident waves instead of normally incident waves, while Goda' s formula may be inapplicable for oblique wave incidence. The shape of simultaneous pressure distribution is not significantly influenced by incident angles, and it can be favorably predicted by Goda' s formula. When regular wave heights are taken as the same as irregular wave height H1%, the irregular wave forces Ph. 1% are slightly larger than regular wave forces in most cases.展开更多
In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load fo...In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.展开更多
The kinematical characteristic analysis of a space oblique spring is carried out.It first points out that the vibration of a space oblique spring can be regarded as the composition of an oscillatory vibration and a st...The kinematical characteristic analysis of a space oblique spring is carried out.It first points out that the vibration of a space oblique spring can be regarded as the composition of an oscillatory vibration and a straight linear vibration.The formulas are derived for the calculation of restoring force and damping force of the spring according to the idea above.展开更多
The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water...The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water is simulated and the hydrodynamic drag,lateral force and yaw moment acting on the hull are obtained by a general purpose computational fluid dynamics(CFD) package FLUENT with shear-stress transport(SST) k—ωturbulence model.The numerical computation is performed at different drift angels and water depths.The numerical results are compared with experimental results,and a good agreement is demonstrated.展开更多
During ultrasonic vibration-assisted machining,the large impact force induced by tool-workpiece reengagement(TWR)is an important factor that affects tool chipping.However,mechanical analysis into process factors that ...During ultrasonic vibration-assisted machining,the large impact force induced by tool-workpiece reengagement(TWR)is an important factor that affects tool chipping.However,mechanical analysis into process factors that affect the impact force and their influencing mechanisms are insufficient.Herein,a prediction model for the instantaneous cutting force during both TWR and the stable turning process,which depends on the process parameters and material properties,is firstly proposed based on the kinematic and dynamic analysis of ultrasonic vibration-assisted oblique turning(UVAOT).The results calculated using the developed cutting force model agree well with the experimental results presented in the literature.Next,the linear change law of the instantaneous cutting force with cutting time during the actual TWR is clarified using the proposed model.The effect of the UVAOT process parameters on the average impact force during the periodic TWR process is discussed,and the influence mechanism is analyzed from the perspective of mechanics.A positive linear correlation is discovered between the feed speed and average impact force.The ultrasonic amplitude and cutting speed do not significantly affect the average impact force of the new sharp cutting tools.These findings are consistent with the experimental observations of tool chipping and are applicable to select process parameters for reducing tool chipping during UVAOT.展开更多
Orbital-scale global climatic changes during the late Quaternary are dominated by high-latitude influenced~100,000-year global ice-age cycles and monsoon influenced~23,000-year low-latitude hydroclimate variations.How...Orbital-scale global climatic changes during the late Quaternary are dominated by high-latitude influenced~100,000-year global ice-age cycles and monsoon influenced~23,000-year low-latitude hydroclimate variations.However,the shortage of highly-resolved land temperature records remains a limiting factor for achieving a comprehensive understanding of long-term low-latitude terrestrial climatic changes.Here,we report paired mean annual air temperature(MAAT)and monsoon intensity proxy records over the past 88,000 years from Lake Tengchongqinghai in southwestern China.While summer monsoon intensity follows the~23,000-year precession beat found also in previous studies,we identify previously unrecognized warm periods at 88,000-71,000 and 45,000-22,000 years ago,with 2-3℃amplitudes that are close to our recorded full glacial-interglacial range.Using advanced transient climate simulations and comparing with forcing factors,we find that these warm periods in our MAAT record probably depends on local annual mean insolation,which is controlled by Earth’s~41,000-year obliquity cycles and is anti-phased to annual mean insolation at high latitudes.The coincidence of our identified warm periods and intervals of high-frequent dated archaeological evidence highlights the importance of temperature on anatomically modern humans in Asia during the last glacial stage.展开更多
基金This project was supported by the Research Fund for the Development of Harbor Engineering Design Specification,the Ministry of Communications of Chinathe Program for Changjiang Scholars and Innovation Research Team in University of China under contract No.IRT0420the Fok Ying Tung Education Foundation of China under contract No.81068.
文摘Wave forces induced by the interaction between the oblique incident wave and the breakwater with a partially perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigen-function expansion method is applied to expanding velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with other theories and a good agreement can be found between them. Experimental data have been compared with the present theoretical results. The effect of the traverse wall on wave forces has been discussed in detail. On the basis of the linear wave theory, it is shown that in the range Of engineering practice, the incident angle of wave has small influence on wave forces on the unit length of perforated caisson.
文摘Obilque cutting of wood is an important form of cutting wood. With the developing of woodworking industry, it is widely used in wood machinary processing such as planing, milling, sawing, drilling and so on. This paper takes oblique planing and helix milling of wood as examples. The influences of bevel angle and other factors on the cutting force have been shown. The changing rules of cutting forces have been summarized. On the basis of it, we especially carried out theoretical analysis on the changing rules of cutting forces and discussed the influence of the changing rules on practice.
基金Supported by the National Natural Science Foundation of China(No.51505124)the Natural Science Foundation of Hebei Province(No.E2016209312)the Foster Fund Projects of North China University of Science and Technology(No.JP201505)
文摘In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on the veracity of detection and judgment to working environment contact force by intelligent robots directly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force sensor is conducted. First, the structure of the sensor is introduced, and the limb number is confirmed by introducing the related definitions of convex analysis. Then, based on vibration of multiple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of sensor and the response of analytical expression are deduced, and the movement differential equations is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as an example, numerical calculation and simulation of deriving result is conducted, which verify the correctness and feasibility of the theoretical analysis.
基金Project 50492073 supported by National Natural Science Foundation of China
文摘A slope will slide if the unbalanced force does not tend to zero when the stability of the slope is analyzed with the help of FLAC. Thus the ultimate reason of slope sliding is the unbalanced force determined by FLAC. The slope will remain stable if the unbalanced force is counterbalanced by a reinforcement force which is produced by a suitable reinforcement method. In this paper, the stability of the slope was analyzed by using FLAC, and the unbalanced force of the slope was obtained through the FISH function in FLAC. According to the equilibrium conditions, the relationship between the reinforcement force and unbalanced force was derived and accordingly the reinforcement force was determined. The reinforcement design was adopted by using pre-stressed anchor bars on the basis of the reinforcement force. An example is used to show that the effect of slope reinforcement based on the reinforcement force is safe and economical. The method doesn't need to suppose a sliding surface to obtain the reinforcement force, and it is also clear in physical meaning. So this method realized the organic unification of the stability analysis and the slope reinforcement.
文摘Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.
基金financially supported by the National Natural Science Foundation of China(Grant No.11702244)the Project of the Cooperation of Zhoushan City and Zhejiang University(Grant No.2017C82223)+1 种基金the Open Foundation of Key Laboratory of Port,Waterway and Sedimentation Engineering of the Ministry of Transport(Grant No.Yn216006)the Fundamental Research Funds for the Central Universities(WUT:2017IVA009)
文摘Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched eigenfunction expansion method and a least square approach, the analytical solutions are sought for the established boundary value problem. The effects of the incidence angle, location of step, depth ratio of deep to shallow waters,and column width between two plates, on the reflection coefficients, the horizontal wave forces acting on the two plates, and the mean surface elevation between the two plates, are numerically examined under a variety of wave conditions. The results show that the existence of the stepped bottom between two plates considerably impacts the hydrodynamic performances of the present system. It is found that the effect of stepped bottom on the reflection coefficient of the present two-plate structure is evident only with waves of the low dimensionless frequency.Moreover, the influence of the step location on the hydrodynamic performance of the present two-plate structure is slight if the step is placed in between the two plates.
基金This researchis financially supported by the Natural National Science Foundation of China (Grant No.50079001)the Key problemof Science and Technology of 15th Five-year Plan"Study of Forecasting and Cautioning Tech-nique of Serious Marine Disaster Inshore"
文摘Regular and irregular wave forces acting on vertical walls are studied by a previously developed numerical model. The computed wave forces are compared with the available experimental data to verify the numerical model, and satisfactory agreements are obtained. The variation of wave forces with incident angles and the shape of simultaneous pressure distribution are investigated, and the comparisons between numerical results and Goda' s predictions are also carried out. It is concluded that the maximum wave forces acting on the unit length of vertical wall is often induced by the obliquely incident waves instead of normally incident waves, while Goda' s formula may be inapplicable for oblique wave incidence. The shape of simultaneous pressure distribution is not significantly influenced by incident angles, and it can be favorably predicted by Goda' s formula. When regular wave heights are taken as the same as irregular wave height H1%, the irregular wave forces Ph. 1% are slightly larger than regular wave forces in most cases.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015zzts210,2016zzts331)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.
基金Supported by National Natural Science Foundation of China(No.1 9990 51 0 ) ,and National Key Basic Research Special Fund (No.
文摘The kinematical characteristic analysis of a space oblique spring is carried out.It first points out that the vibration of a space oblique spring can be regarded as the composition of an oscillatory vibration and a straight linear vibration.The formulas are derived for the calculation of restoring force and damping force of the spring according to the idea above.
基金the National Natural Science Foundationof China(No.10572094)the Natural Science Foundation of Shanghai(No.06ZR14050)
文摘The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water is simulated and the hydrodynamic drag,lateral force and yaw moment acting on the hull are obtained by a general purpose computational fluid dynamics(CFD) package FLUENT with shear-stress transport(SST) k—ωturbulence model.The numerical computation is performed at different drift angels and water depths.The numerical results are compared with experimental results,and a good agreement is demonstrated.
基金financial support from the National Natural Science Foundation of China(Grant No.91860207)supported by the National Key Research and Development Program of China(Grant No.2019YFB2005401)the Shandong Provincial Natural Science Foundation of China(Grant No.2019JMRH0307).
文摘During ultrasonic vibration-assisted machining,the large impact force induced by tool-workpiece reengagement(TWR)is an important factor that affects tool chipping.However,mechanical analysis into process factors that affect the impact force and their influencing mechanisms are insufficient.Herein,a prediction model for the instantaneous cutting force during both TWR and the stable turning process,which depends on the process parameters and material properties,is firstly proposed based on the kinematic and dynamic analysis of ultrasonic vibration-assisted oblique turning(UVAOT).The results calculated using the developed cutting force model agree well with the experimental results presented in the literature.Next,the linear change law of the instantaneous cutting force with cutting time during the actual TWR is clarified using the proposed model.The effect of the UVAOT process parameters on the average impact force during the periodic TWR process is discussed,and the influence mechanism is analyzed from the perspective of mechanics.A positive linear correlation is discovered between the feed speed and average impact force.The ultrasonic amplitude and cutting speed do not significantly affect the average impact force of the new sharp cutting tools.These findings are consistent with the experimental observations of tool chipping and are applicable to select process parameters for reducing tool chipping during UVAOT.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB40010200 and XDA2009000004)the Program of Global Change and Mitigation+1 种基金Ministry of Science and Technology of China(2016YFA0600502)the National Natural Science Foundation of China(41877293,41672162,41977381,and 41472315)。
文摘Orbital-scale global climatic changes during the late Quaternary are dominated by high-latitude influenced~100,000-year global ice-age cycles and monsoon influenced~23,000-year low-latitude hydroclimate variations.However,the shortage of highly-resolved land temperature records remains a limiting factor for achieving a comprehensive understanding of long-term low-latitude terrestrial climatic changes.Here,we report paired mean annual air temperature(MAAT)and monsoon intensity proxy records over the past 88,000 years from Lake Tengchongqinghai in southwestern China.While summer monsoon intensity follows the~23,000-year precession beat found also in previous studies,we identify previously unrecognized warm periods at 88,000-71,000 and 45,000-22,000 years ago,with 2-3℃amplitudes that are close to our recorded full glacial-interglacial range.Using advanced transient climate simulations and comparing with forcing factors,we find that these warm periods in our MAAT record probably depends on local annual mean insolation,which is controlled by Earth’s~41,000-year obliquity cycles and is anti-phased to annual mean insolation at high latitudes.The coincidence of our identified warm periods and intervals of high-frequent dated archaeological evidence highlights the importance of temperature on anatomically modern humans in Asia during the last glacial stage.