Atmospheric oxidizing capacity(AOC)is the fundamental driving factors of chemistry process(e.g.,the formation of ozone(O_(3))and secondary organic aerosols(SOA))in the troposphere.However,accurate quantification of AO...Atmospheric oxidizing capacity(AOC)is the fundamental driving factors of chemistry process(e.g.,the formation of ozone(O_(3))and secondary organic aerosols(SOA))in the troposphere.However,accurate quantification of AOC still remains uncertainty.In this study,a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing,where O_(3) and PM_(2.5) episodes had been experienced successively.The observation-based model(OBM)is used to quantify the AOC at O_(3) and PM_(2.5) episodes.The strong intensity of AOC is found at O_(3) and PM2.5 episodes,and hydroxyl radical(OH)is the dominating daytime oxidant for both episodes.The photolysis of O_(3) is main source of OH at O_(3) episode;the photolysis of nitrous acid(HONO)and formaldehyde(HCHO)plays important role in OH formation at PM_(2.5) episode.The radicals loss routines vary according to precursor pollutants,resulting in different types of air pollution.O_(3) budgets and sensitivity analysis indicates that O_(3) production is transition regime(both VOC and NOx-limited)at O3 episode.The heterogeneous reaction of hydroperoxy radicals(HO_(2))on aerosol surfaces has significant influence on OH and O_(3) production rates.The HO_(2) uptake coefficient(γHO_(2))is the determining factor and required accurate measurement in real atmospheric environment.Our findings could provide the important bases for coordinated control of PM_(2.5) and O_(3) pollution.展开更多
Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution forma...Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution formation mechanism and developing prevention and control strategies.This paper outlined the development history of research on O_(3)formation sensitivity based on observational methods,described the principle and applicability of the methodology,summarized the relative application results in China and provided recommendations on the prevention and control of O_(3)pollution in China based on relevant study results,and finally pointed out the shortcomings and future development prospects in this field in China.The overview study showed that the O_(3)formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NO_(x)-limited regime due to the implementation of the O_(3)precursors emission reduction policies;O_(3)pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O_(3)pollution control measures should be improved.There are still some current deficiencies in the study field in China.Therefore,it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved;the atmospheric chemical mechanisms should be vigorously developed,and standardized methods for determining the O_(3)formation sensitivity should be established in China in the near future.展开更多
Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been...Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been clearly elucidated.Here we measured carbonyl compounds and other trace gasses together with PM_(2.5)over urban Jinan in North China Plain during the winter.Markedly higher carbonyl concentrations(average:14.63±4.21 ppbv)were found during wintertime haze pollution,about one to three-times relative to those on nonhaze days,with slight difference in chemical composition except formaldehyde(HCHO).HCHO(3.68 ppbv),acetone(3.17 ppbv),and acetaldehyde(CH_3CHO)(2.83 ppbv)were the three most abundant species,accounting for~75% of the total carbonylson both haze and non-haze days.Results from observational-based model(OBM)with atmospheric oxidation capacity(AOC)indicated that AOC significantly increased with the increasing carbonyls during the winter haze events.Carbonyl photolysis have supplied key oxidants such as RO_(2) and HO_(2),and thereby enhancing the formation of fine particles and secondary organic aerosols,elucidating the observed haze-carbonyls inter-correlation.Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources.1-butene was further confirmed to be the major precursor for HCHO.This study confirms the great contribution of carbonyls to AOC,and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.展开更多
基金supported by the National Key Research and Development Program of China (No. 2017YFC0210001)the National Natural Science Foundation of China (Nos. 41830106, 42022039)+1 种基金Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202011)the Youth Innovation Promotion Association CAS (No. 2017042)
文摘Atmospheric oxidizing capacity(AOC)is the fundamental driving factors of chemistry process(e.g.,the formation of ozone(O_(3))and secondary organic aerosols(SOA))in the troposphere.However,accurate quantification of AOC still remains uncertainty.In this study,a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing,where O_(3) and PM_(2.5) episodes had been experienced successively.The observation-based model(OBM)is used to quantify the AOC at O_(3) and PM_(2.5) episodes.The strong intensity of AOC is found at O_(3) and PM2.5 episodes,and hydroxyl radical(OH)is the dominating daytime oxidant for both episodes.The photolysis of O_(3) is main source of OH at O_(3) episode;the photolysis of nitrous acid(HONO)and formaldehyde(HCHO)plays important role in OH formation at PM_(2.5) episode.The radicals loss routines vary according to precursor pollutants,resulting in different types of air pollution.O_(3) budgets and sensitivity analysis indicates that O_(3) production is transition regime(both VOC and NOx-limited)at O3 episode.The heterogeneous reaction of hydroperoxy radicals(HO_(2))on aerosol surfaces has significant influence on OH and O_(3) production rates.The HO_(2) uptake coefficient(γHO_(2))is the determining factor and required accurate measurement in real atmospheric environment.Our findings could provide the important bases for coordinated control of PM_(2.5) and O_(3) pollution.
基金supported by the National Research Program for Key Issues in Air Pollution Control(No.DQGG202121)the Beijing Municipal Science&Technology Commission(No.Z181100005418015)+1 种基金National Natural Science Foundation of China(No.42075094)the National Research Program for Key Issue in Air Pollution Control(No.DQGG2021101)。
文摘Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution formation mechanism and developing prevention and control strategies.This paper outlined the development history of research on O_(3)formation sensitivity based on observational methods,described the principle and applicability of the methodology,summarized the relative application results in China and provided recommendations on the prevention and control of O_(3)pollution in China based on relevant study results,and finally pointed out the shortcomings and future development prospects in this field in China.The overview study showed that the O_(3)formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NO_(x)-limited regime due to the implementation of the O_(3)precursors emission reduction policies;O_(3)pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O_(3)pollution control measures should be improved.There are still some current deficiencies in the study field in China.Therefore,it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved;the atmospheric chemical mechanisms should be vigorously developed,and standardized methods for determining the O_(3)formation sensitivity should be established in China in the near future.
基金supported by the National Natural Science Foundation of China(Nos.42005092,42275127,42075112and 41775127)the Natural Science Foundation of Shandong Province(No.ZR2020QD058)。
文摘Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been clearly elucidated.Here we measured carbonyl compounds and other trace gasses together with PM_(2.5)over urban Jinan in North China Plain during the winter.Markedly higher carbonyl concentrations(average:14.63±4.21 ppbv)were found during wintertime haze pollution,about one to three-times relative to those on nonhaze days,with slight difference in chemical composition except formaldehyde(HCHO).HCHO(3.68 ppbv),acetone(3.17 ppbv),and acetaldehyde(CH_3CHO)(2.83 ppbv)were the three most abundant species,accounting for~75% of the total carbonylson both haze and non-haze days.Results from observational-based model(OBM)with atmospheric oxidation capacity(AOC)indicated that AOC significantly increased with the increasing carbonyls during the winter haze events.Carbonyl photolysis have supplied key oxidants such as RO_(2) and HO_(2),and thereby enhancing the formation of fine particles and secondary organic aerosols,elucidating the observed haze-carbonyls inter-correlation.Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources.1-butene was further confirmed to be the major precursor for HCHO.This study confirms the great contribution of carbonyls to AOC,and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.