We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscal...We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.展开更多
We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-...We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.展开更多
The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this p...The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
After more than 18 months of nearly flawless operation,the James Webb Space Telescope(JWST)continues to deliver amazement,making unexpected discoveries,adding new wrinkles to known phenomena,and calling into question ...After more than 18 months of nearly flawless operation,the James Webb Space Telescope(JWST)continues to deliver amazement,making unexpected discoveries,adding new wrinkles to known phenomena,and calling into question long-held theories of how the universe works.“The instruments are working amazingly well,in essentially all cases better than expected,”said Garth Illingworth,professor emeritus of astronomy and astrophysics at the University of California,Santa Cruz(CA,USA),and one of the three originators of the mission over three decades ago.“It has exceeded every one of its performance requirements,which is truly amazing when you think about how complex it is.”That complexity has included three decades of planning,design,and construction,followed by launch and maneuvering 1.5106 km from Earth to its second Lagrange(L2)orbit,unfolding and locking into position the 18 segments of its 6.5 m diameter main mirror,and deploying 8 motors,90 cables,and some 400 pulleys to unfurl its fragile sunshield[1,2].展开更多
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
The international Argo program,a global observational array of nearly 4000 autonomous profiling floats initiated in the late 1990s,which measures the water temperature and salinity of the upper 2000 m of the global oc...The international Argo program,a global observational array of nearly 4000 autonomous profiling floats initiated in the late 1990s,which measures the water temperature and salinity of the upper 2000 m of the global ocean,has revolutionized oceanography.It has been recognized one of the most successful ocean observation systems in the world.Today,the proposed decade action“OneArgo”for building an integrated global,full-depth,and multidisciplinary ocean observing array for beyond 2020 has been endorsed.In the past two decades since 2002,with more than 500 Argo deployments and 80 operational floats currently,China has become an important partner of the Argo program.Two DACs have been established to process the data reported from all Chinese floats and deliver these data to the GDACs in real time,adhering to the unified quality control procedures proposed by the Argo Data Management Team.Several Argo products have been developed and released,allowing accurate estimations of global ocean warming,sea level change and the hydrological cycle,at interannual to decadal scales.In addition,Deep and BGC-Argo floats have been deployed,and time series observations from these floats have proven to be extremely useful,particularly in the analysis of synoptic-scale to decadal-scale dynamics.The future aim of China Argo is to build and maintain a regional Argo fleet comprising approximately 400 floats in the northwestern Pacific,South China Sea,and Indian Ocean,accounting for 9%of the global fleet,in addition to maintaining 300 Deep Argo floats in the global ocean(25%of the global Deep Argo fleet).A regional BGC-Argo array in the western Pacific also needs to be established and maintained.展开更多
Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot...Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank.展开更多
Globally, mountains encompass spectacular landscapes and a great diversity of species. However, Savannah’s mountains in Sudan have been affected by the loss of diversity due to human activities and climate changes. T...Globally, mountains encompass spectacular landscapes and a great diversity of species. However, Savannah’s mountains in Sudan have been affected by the loss of diversity due to human activities and climate changes. Therefore, this study aims to assess changes in wildlife diversity in Jebel-Eldair Nation Park (JENP) based on only reports from patrolling activities, especially in the absence of regular wildlife monitoring programs. Reports of monthly wildlife observations during patrolling trips were used for the summer season in 2010 and 2018. Findings showed a moderate to high decline in the most important wildlife species (i.e. lion, wild dog, and crest porcupine). Six others are documented as rare species in reserve, including the civet, spotted hyena, striped hyena, jackal, seraval, and Siberian bird. Contrary and despite the diversity reduction, some species witnessed increases in their observation frequency, such as lesser kudu, caracal, monitor, and lunar bird. Moreover, human settlements, agricultural activities, and other anthropogenic factors were found to be the main drivers of biodiversity reduction in JENP. The study recommends adopting this method to detect changes in wildlife communities, especially in a situation of deficiency and lack of funding to conduct regular monitoring programs.展开更多
基金support from the European Space Agency(ESA)PRODEX(PROgramme de Développement d’Expériences scientifiques)Project mission(No.PEA4000134960)Partial funding was provided by the Romanian Ministry of Research,Innovation and Digitalization under Romanian National Core Program LAPLAS VII(Contract No.30N/2023)+2 种基金the Belgian Solar-Terrestrial Centre of Excellencesupported by the project Belgian Research Action through Interdisciplinary Networks(BRAIN-BE)2.0(Grant No.B2/223/P1/PLATINUM)funded by the Belgian Office for Research(BELSPO)partially supported by a grant from the Romanian Ministry of Education and Research(CNCS-UEFISCDI,Project No.PN-III-P1-1.1TE-2021-0102)。
文摘We derived the properties of the terrestrial magnetopause(MP)from two modeling approaches,one global–fluid,the other local–kinetic,and compared the results with data collected in situ by the Magnetospheric Multiscale 2(MMS2)spacecraft.We used global magnetohydrodynamic(MHD)simulations of the Earth’s magnetosphere(publicly available from the NASA-CCMC[National Aeronautics and Space Administration–Community Coordinated Modeling Center])and local Vlasov equilibrium models(based on kinetic models for tangential discontinuities)to extract spatial profiles of the plasma and field variables at the Earth’s MP.The global MHD simulations used initial solar wind conditions extracted from the OMNI database at the time epoch when the MMS2 observes the MP.The kinetic Vlasov model used asymptotic boundary conditions derived from the same in situ MMS measurements upstream or downstream of the MP.The global MHD simulations provide a three-dimensional image of the magnetosphere at the time when the MMS2 crosses the MP.The Vlasov model provides a one-dimensional local view of the MP derived from first principles of kinetic theory.The MMS2 experimental data also serve as a reference for comparing and validating the numerical simulations and modeling.We found that the MP transition layer formed in global MHD simulations was generally localized closer to the Earth(roughly by one Earth radius)from the position of the real MP observed by the MMS.We also found that the global MHD simulations overestimated the thickness of the MP transition by one order of magnitude for three analyzed variables:magnetic field,density,and tangential speed.The MP thickness derived from the local Vlasov equilibrium was consistent with observations for all three of these variables.The overestimation of density in the Vlasov equilibrium was reduced compared with the global MHD solutions.We discuss our results in the context of future SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)campaigns for observing the Earth’s MP.
基金supported by the National Key R&D Program of China(2023YFA1607800 and 2023YFA1607803)National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and 11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.
基金funded by the China Manned Space Program (Grant Y59003AC40)TM-1 Constellation Atmospheric Density Detector (Grant E3C1162110)
文摘The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
文摘After more than 18 months of nearly flawless operation,the James Webb Space Telescope(JWST)continues to deliver amazement,making unexpected discoveries,adding new wrinkles to known phenomena,and calling into question long-held theories of how the universe works.“The instruments are working amazingly well,in essentially all cases better than expected,”said Garth Illingworth,professor emeritus of astronomy and astrophysics at the University of California,Santa Cruz(CA,USA),and one of the three originators of the mission over three decades ago.“It has exceeded every one of its performance requirements,which is truly amazing when you think about how complex it is.”That complexity has included three decades of planning,design,and construction,followed by launch and maneuvering 1.5106 km from Earth to its second Lagrange(L2)orbit,unfolding and locking into position the 18 segments of its 6.5 m diameter main mirror,and deploying 8 motors,90 cables,and some 400 pulleys to unfurl its fragile sunshield[1,2].
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金The National Natural Science Foundation of China under contract Nos 42122046,42076202,U1811464 and 4210060098the Project Supported by Laoshan Laboratory under contract No.LSKJ202201500the Project Supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP102.
文摘The international Argo program,a global observational array of nearly 4000 autonomous profiling floats initiated in the late 1990s,which measures the water temperature and salinity of the upper 2000 m of the global ocean,has revolutionized oceanography.It has been recognized one of the most successful ocean observation systems in the world.Today,the proposed decade action“OneArgo”for building an integrated global,full-depth,and multidisciplinary ocean observing array for beyond 2020 has been endorsed.In the past two decades since 2002,with more than 500 Argo deployments and 80 operational floats currently,China has become an important partner of the Argo program.Two DACs have been established to process the data reported from all Chinese floats and deliver these data to the GDACs in real time,adhering to the unified quality control procedures proposed by the Argo Data Management Team.Several Argo products have been developed and released,allowing accurate estimations of global ocean warming,sea level change and the hydrological cycle,at interannual to decadal scales.In addition,Deep and BGC-Argo floats have been deployed,and time series observations from these floats have proven to be extremely useful,particularly in the analysis of synoptic-scale to decadal-scale dynamics.The future aim of China Argo is to build and maintain a regional Argo fleet comprising approximately 400 floats in the northwestern Pacific,South China Sea,and Indian Ocean,accounting for 9%of the global fleet,in addition to maintaining 300 Deep Argo floats in the global ocean(25%of the global Deep Argo fleet).A regional BGC-Argo array in the western Pacific also needs to be established and maintained.
基金supported by the National Natural Science Foundations of China (Grant Nos. 41930759, 41822501, 42075089, 41975014)the 2nd Scientific Expedition to the Qinghai-Tibet Plateau (2019QZKK0102)+3 种基金The Science and Technology Research Plan of Gansu Province (20JR10RA070)the Chinese Academy of Youth Innovation and Promotion, CAS (Y201874)the Youth Innovation Promotion Association CAS (QCH2019004)iLEAPs (Integrated Land Ecosystem-Atmosphere Processes Study-iLEAPS)。
文摘Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank.
文摘Globally, mountains encompass spectacular landscapes and a great diversity of species. However, Savannah’s mountains in Sudan have been affected by the loss of diversity due to human activities and climate changes. Therefore, this study aims to assess changes in wildlife diversity in Jebel-Eldair Nation Park (JENP) based on only reports from patrolling activities, especially in the absence of regular wildlife monitoring programs. Reports of monthly wildlife observations during patrolling trips were used for the summer season in 2010 and 2018. Findings showed a moderate to high decline in the most important wildlife species (i.e. lion, wild dog, and crest porcupine). Six others are documented as rare species in reserve, including the civet, spotted hyena, striped hyena, jackal, seraval, and Siberian bird. Contrary and despite the diversity reduction, some species witnessed increases in their observation frequency, such as lesser kudu, caracal, monitor, and lunar bird. Moreover, human settlements, agricultural activities, and other anthropogenic factors were found to be the main drivers of biodiversity reduction in JENP. The study recommends adopting this method to detect changes in wildlife communities, especially in a situation of deficiency and lack of funding to conduct regular monitoring programs.