Institutions of astronomic research within theChinese Academy of Sciences (CAS) are among thefirst to gain the access to the pilot project of the na-tional knowledge innovation program (KIP) carriedout at CAS. The ope...Institutions of astronomic research within theChinese Academy of Sciences (CAS) are among thefirst to gain the access to the pilot project of the na-tional knowledge innovation program (KIP) carriedout at CAS. The operating mechanism reform at Na-tional Astronomic Observatories (NAO) includes theestablishment of research teams and the introductionof a new system in which R&D projects are in展开更多
A geomagnetic observatory was established at Karachi (geog coord: 24.95°N, 167.14° E), Pakistan in 1983 which comprised of AMOS-Ⅲ (Automatic Magnetic Observatory System). In 2006 SUPARCO (Space and Up...A geomagnetic observatory was established at Karachi (geog coord: 24.95°N, 167.14° E), Pakistan in 1983 which comprised of AMOS-Ⅲ (Automatic Magnetic Observatory System). In 2006 SUPARCO (Space and Upper Atmosphere Research Commission) planned to upgrade the old observatory of Karachi in order to qualify it as an IMO (Intermagnet Magnetic Observatory). Dr. Jean Rasson agreed to give support and assist us in the upgradation. BGS (British Geological Survey) provided a complete observatory instrument setup. Due to perturbations traceable to the increased urbanization, the observatory has been shifted to a site "Sonmiani", 80 km north-west of Karachi, where long term protection from cultural noise is offered. This site in a sparsely built research complex was selected after a magnetic survey. A new observatory has also been established at Islamabad (geog cord: 33.75° N, 72.87° E) which is mountainous region. SUPARCO purchased new equipment for the establishment of new observatories. Plan of upgradation of observatory at Quetta is also under consideration in order to improve the monitoring of geomagnetic field on the western part of Pakistan. Repeat station work has been done for the northern part of Pakistan with the collaboration of IRM, Belgium. The obtained results also compared with the global geomagnetic model (IGRF).展开更多
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat...Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.展开更多
Cabled seafloor observatories play an important role in ocean exploration for its long-term, real-time, and in-situ observation characteristics. In establishing a permanent, reliable, and robust seafloor observatory, ...Cabled seafloor observatories play an important role in ocean exploration for its long-term, real-time, and in-situ observation characteristics. In establishing a permanent, reliable, and robust seafloor observatory, a highly reliable cable switching and fault isolation method is essential. After reviewing the advantages and disadvantages of existing switching methods, we propose a novel active switching method for network configuration. Without additional communication path requirements, the switching method provides a way to communicate with a shore station through an existing power transmission path. A coded voltage signal with a distinct sequence is employed as the communication medium to transmit commands. The analysis of the maximum bit frequency of the voltage signals guarantees the accuracy of command recognition. A prototype based on the switching method is built and tested in a laboratory environment, which validated the functionality and reliability of the method.展开更多
The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buc...The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.展开更多
Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of t...Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.展开更多
Research on the solar magnetic field and its effects on solar dynamo mechanisms and space weather events has benefited from the continual improvements in instrument resolution and measurement frequency.The augmentatio...Research on the solar magnetic field and its effects on solar dynamo mechanisms and space weather events has benefited from the continual improvements in instrument resolution and measurement frequency.The augmentation and assimilation of historical observational data timelines also play a significant role in understanding the patterns of solar magnetic field variation.Within the realm of astronomical data processing,super-resolution(SR)reconstruction refers to the process of using a substantial corpus of training data to learn the nonlinear mapping between low-resolution(LR)and high-resolution(HR)images,thereby achieving higherresolution astronomical images.This paper is an application study in high-dimensional nonlinear regression.Deep learning models were employed to perform SR modeling on SOHO/MDI magnetograms and SDO/HMI magnetograms,thus reliably achieving resolution enhancement of full-disk SOHO/MDI magnetograms and enhancing the image resolution to obtain more detailed information.For this study,a data set comprising 9717pairs of data from 2010 April to 2011 February was used as the training set,1332 pairs from 2011 March were used as the validation set and 1034 pairs from 2011 April were used as the test set.After data preprocessing,we randomly cropped 128×128 sub-images as the LR cases from the full-disk MDI magnetograms,and the corresponding 512×512 sub-images as HR ones from the HMI full-disk magnetograms for model training.The tests conducted have shown that the study successfully produced reliable 4×SR reconstruction of full-disk MDI magnetograms.The MESR model's results(0.911)were highly correlated with the target HMI magnetographs as indicated by the correlation coefficient values.Furthermore,the method achieved the best PSNR,SSIM,MAE and RMSE values,indicating that the MESR model can effectively reconstruct magnetograms.展开更多
Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional meth...Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.Consequently,there is a pressing need for improved methods to efficiently extract them.This study explores the potential of pre-trained Large Language Models(LLMs)to perform astronomical knowledge entity extraction(KEE)task from astrophysical journal articles using prompts.We propose a prompting strategy called PromptKEE,which includes five prompt elements,and design eight combination prompts based on them.We select four representative LLMs(Llama-2-70B,GPT-3.5,GPT-4,and Claude 2)and attempt to extract the most typical astronomical knowledge entities,celestial object identifiers and telescope names,from astronomical journal articles using these eight combination prompts.To accommodate their token limitations,we construct two data sets:the full texts and paragraph collections of 30 articles.Leveraging the eight prompts,we test on full texts with GPT-4and Claude 2,on paragraph collections with all LLMs.The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks,but their performance varies on the two data sets.Furthermore,we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.Finally,compared to other methods of KEE,LLMs exhibit strong competitiveness in multiple aspects.展开更多
Constant current power transmission is considered a good choice for subsea observatories due to its high resistance to shunt faults. A constant current subsea observatory is planned to be constructed in the East China...Constant current power transmission is considered a good choice for subsea observatories due to its high resistance to shunt faults. A constant current subsea observatory is planned to be constructed in the East China Sea. We discuss a constant current subsea observatory system used for scientific experiments. The power system and its heat dissipation system are carefully designed. The power conversion method is challenging due to the use of constant current power, which is considerably different from traditional power systems. Thus, we adopt power compensation circuits in the conversion system to obtain a constant 48-V output for science users. A power management system that performs overvoltage protection and real-time monitoring and control of junction box is discussed. An innovative heat dissipation structure of a junction box is designed in consideration of a sealed working environment to extend the useful life of the junction box. Simulations and experiments reveal that the system has high efficiency and stability, especially in long-term applications.展开更多
Space weather has a remarkable effect on modern human activities,e.g.,communication,navigation,space exploration etc.Space physics study from polar stations is as an important part of the entire solar-terrestrial spac...Space weather has a remarkable effect on modern human activities,e.g.,communication,navigation,space exploration etc.Space physics study from polar stations is as an important part of the entire solar-terrestrial space,and conducts quantitative research from the perspective of overall space plasma behavior.One of the most important issues is to identify the dominant processes that transfer plasma and momentum from the solar wind to Earth’s magnetosphere.Thus,it is necessary to carry out research for combination the observations from polar ground stations and spacecraft observations in the space.Observations at polar regions can be as a window to the space for satellite traffic controls.The operation of the observation chain―Zhongshan-Taishan-Kunlun Station could monitor polar space debris in a large area with high temporal and spatial resolution.Also,night-time measurements of astronomical seeing at Dome A in Antarctica make it less challenging to locate a telescope above it,thereby giving greater access to the free atmosphere because of a thinner boundary layer.展开更多
Although Nigeria is not located within the major seismic zones of the world; over the years,several minor earthquakes have been experienced in some parts of the country.The first widely reported occurrence of an Earth...Although Nigeria is not located within the major seismic zones of the world; over the years,several minor earthquakes have been experienced in some parts of the country.The first widely reported occurrence of an Earth tremor in Nigeria was in 1933.Other events were reported in 1939,1964,1984,1990,1994,1997,2000 and 2006.The intensities of these events ranged from III to VI based on the Modified Mercalli Intensity Scale.Of these events,only the 1984,1990,1994 and 2000 events were instrumentally recorded.They had body wave magnitudes ranging from 4.3 to 4.5,local magnitudes between 3.7 and 4.2,and surface wave magnitudes of 3.7 to 3.9.When these events occurred,there were no functional seismological observatories in Nigeria.However,that has now changed with the establishment of a seismographic network managed by the Centre for Geodesy and Geodynamics(CGG),Toro,Nigeria.Presently,the network has four operational stations equipped with 24-bit 4-channel recorders and broadband 30-second seismometers.Efforts are being made to establish more stations and migrate to real-time collection of seismic data using the general packet radio service(GPRS) technology as well as automatic location of events.Remote sensing,geological and geophysical studies have revealed the presence of a NNE-SSW trending Ifewara-Zungeru fault zone which has been shown to be linked with the Atlantic fracture system.The dynamics of the Atlantic fracture zones have been suggested to be responsible for the seismic activities experienced in the areas.展开更多
The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of...The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of various sizes,for the recorded magnetic components at different latitudes and latitudes.The observatories we included in our study are USA(Surlari),HON(Honolulu),SBA(Scott Base),KAK(Kakioka),THY(Tihany),UPS(Uppsala),WNG(Wingst)and Yellowknife(YKC).We used the data of these observatories from International Real-time Magnetic Observatory Network(INTERMAGNET)for the geomagnetic storm from October 28-31,2003.We have used for this purpose a series of filtering algorithms,spectral analysis and wavelet with different mother functions at different levels.In the paper,we show the Fourier and wavelet analysis of geomagnetic data recorded at different observatories regarding geomagnetic storms.Fourier analysis hightlights predominant frequencies of magnetic field components.Wavelet analysis provides information about the frequency ranges of magnetic fields,which contain long time intervals for medium frequency information and short time intervals for highlight frequencies,details of the analyzed signals.Also,the wavelet analysis allows us to decompose geomagnetic signals in different waves.The analyses presented are significant for the studies of the geomagnetic storm.The data for the next days after the storm showed a mitigation of the perturbations and a transition to quiet days of the geomagnetic field.展开更多
We are playing a lead role for growth of astronomy and its quality teaching and research in Manipur, a State located at northeast India (longitude = 93°58'E;latitude = 24°44'N;altitude = 782 m). We h...We are playing a lead role for growth of astronomy and its quality teaching and research in Manipur, a State located at northeast India (longitude = 93°58'E;latitude = 24°44'N;altitude = 782 m). We have innovatively designed and constructed three cost effective observatories, each costing a few hundred USD. These observatories are completely different in design and are perfectly usable for doing serious work on astronomical observation and measurements, using small ground-based telescopes. One Celestron CGE1400 telescope is housed with equatorial mounting in one of three constructed observatories and the same observatory has been inducted, since January 2012, as one of the members of the “Orion Project”, which is an international project headquartered at Phoenix, Arizona, USA, dedicated for photometric and spectroscopic observations of five bright variable stars of the Orion constellation. We have been producing high precision BVRI photometric data that match well with those produced by other observatories enrolled in the Orion project. Our photometric data were presented and discussed in the 33rd Annual Conference of the Society for Astronomical Sciences: Symposium on Telescope Science, held at Ontario, California, USA during June 12 - 14, 2014. Further, we could successfully demonstrate them to the entire population of the State and play live shows of the observation of three spectacular astronomical events namely, solar eclipse of 15th January 2010, lunar eclipse of 10th December 2011 and Transit of Venus of June 6, 2012. We have conducted a number of seminars and workshops for training and research in astronomy. In the present paper, we would like describe our self-built observatories, our observational facilities, the BVRI photometric data that we acquired for the Orion project, and other activities undertaken for growth of astronomy activities in the State of Manipur, India.展开更多
To automate the process of planning and curating multi-target observation sessions, pysky application builds on the astroplan Python package to identify visible objects during an observation window and produce relevan...To automate the process of planning and curating multi-target observation sessions, pysky application builds on the astroplan Python package to identify visible objects during an observation window and produce relevant information about those objects in visual and graphical form. The package calculates object visibility based on a provided time window and observing location as well as maximum airmass and limiting magnitude requested by the user. The pysky application images of the target objects with identifying and astrometric data to provide context for the images. In addition, pysky creates polar plots of each object’s horizontal coordinates, and the images and plots are designed to be shown side-by-side. The package also generates an HTML table of the selected target objects with their related data to relay the entire target list as one. The pysky application draws on a variety of Python packages to collect and process data from databases such as JPL Horizons and SIMBAD. Results for a test event were verified by hand using database web interfaces. The pysky application provides a platform for further integration of automated observation planning with websites and apps to enhance multi-target observation sessions.展开更多
This paper presents a method to associate land use/cover with productivity in 16 Agrotech Observatories (AOTs) in Mexico. Compact agricultural areas in Mexico have been identified, which are monitored as to their beha...This paper presents a method to associate land use/cover with productivity in 16 Agrotech Observatories (AOTs) in Mexico. Compact agricultural areas in Mexico have been identified, which are monitored as to their behavior concerning production and rural productivity in a network of AOTs, which is a compact agricultural area representative of agro-ecological, technological and social conditions in the country. To optimize production and agricultural productivity in compact areas, a multidisciplinary and holistic approach with four lines of activity (agro-ecological, technological, economic, and social), and ten actions are used. The objective of this work was to obtain the land use/cover and productivity of sixteen compact agricultural areas (AOTs) in the Mexican Republic, using panchromatic and multispectral SPOT 5 imagery, in order to provide information to the agricultural sector of the country, and to support decision making contributing to the optimization of production in areas with high actual and potential productivity. As an example, in this paper the land use/cover and productivity “AOT 20 Hidalgo” were described. Currently, it is important to have updated and accurate information to support actions and programs of federal, state and local government for farmers, particularly in compact areas with high agricultural production potential.展开更多
Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Sh...Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.展开更多
A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/s...A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/sec Ethemet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethemet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.展开更多
Covering about three quarters of the surface area of the earth,the ocean is a critical source of sustenance,medicine,and commerce.However,such vast expanse in both surface area and depth,presents myriad observing chal...Covering about three quarters of the surface area of the earth,the ocean is a critical source of sustenance,medicine,and commerce.However,such vast expanse in both surface area and depth,presents myriad observing challenges for researchers,such as corrosion,attenuation of electromagnetic waves,and high pressure.Ocean observation technologies are progressing from the conventional single node,static and short-term modalities to multiple nodes,dynamic and long-term modalities,to increase the density of both temporal and spatial samplings.Although people’s knowledge of the oceans has been still quite limited,the contributions of many nations cooperating to develop the Global Ocean Observing System(GOOS)have remarkably promoted the development of ocean observing technologies.This paper reviews the typical observing technologies deployed from the sea surface to the seafloor,and discusses the future trend of the ocean observation systems with the docking technology and sustained ocean energy.展开更多
With the availability of multi-object spectrometers and the design and operation of some large scale sky surveys, the issue of how to deal with enormous quantities of spectral data efficiently and accurately is becomi...With the availability of multi-object spectrometers and the design and operation of some large scale sky surveys, the issue of how to deal with enormous quantities of spectral data efficiently and accurately is becoming more and more important. This work investigates the classification problem of stellar spectra under the assumption that there is no perfect absolute flux calibration, for example, when considering spectra from the Guo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST). The proposed scheme consists of the following two procedures: Firstly, a spectrum is normalized based on a 17 th order polynomial fitting;secondly, a random forest(RF) is utilized to classify the stellar spectra. Experiments on four stellar spectral libraries show that the RF has good classification performance. This work also studied the spectral feature evaluation problem based on RF. The evaluation is helpful in understanding the results of the proposed stellar classification scheme and exploring its potential improvements in the future.展开更多
文摘Institutions of astronomic research within theChinese Academy of Sciences (CAS) are among thefirst to gain the access to the pilot project of the na-tional knowledge innovation program (KIP) carriedout at CAS. The operating mechanism reform at Na-tional Astronomic Observatories (NAO) includes theestablishment of research teams and the introductionof a new system in which R&D projects are in
文摘A geomagnetic observatory was established at Karachi (geog coord: 24.95°N, 167.14° E), Pakistan in 1983 which comprised of AMOS-Ⅲ (Automatic Magnetic Observatory System). In 2006 SUPARCO (Space and Upper Atmosphere Research Commission) planned to upgrade the old observatory of Karachi in order to qualify it as an IMO (Intermagnet Magnetic Observatory). Dr. Jean Rasson agreed to give support and assist us in the upgradation. BGS (British Geological Survey) provided a complete observatory instrument setup. Due to perturbations traceable to the increased urbanization, the observatory has been shifted to a site "Sonmiani", 80 km north-west of Karachi, where long term protection from cultural noise is offered. This site in a sparsely built research complex was selected after a magnetic survey. A new observatory has also been established at Islamabad (geog cord: 33.75° N, 72.87° E) which is mountainous region. SUPARCO purchased new equipment for the establishment of new observatories. Plan of upgradation of observatory at Quetta is also under consideration in order to improve the monitoring of geomagnetic field on the western part of Pakistan. Repeat station work has been done for the northern part of Pakistan with the collaboration of IRM, Belgium. The obtained results also compared with the global geomagnetic model (IGRF).
基金sponsored by the National Natural Science Foundation of China(NSFC)under the grant numbers(11773073,11873027,U2031140,11833010)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009+1 种基金Yunnan Provincial Science and Technology Department(202103AD50013,202105AB160001,202305AH340002)the GHfund A202302013242 and CAS“Light of West China”Program 202305AS350029.
文摘Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.
基金supported by the National Natural Science Foundation of China(Nos.51409229,41676089,and 51521064)the National High-Tech R&D Program(863)of China(No.2012AA09A410)the Zhejiang Provincial Natural Science Foundation of China(No.LQ14E070002)
文摘Cabled seafloor observatories play an important role in ocean exploration for its long-term, real-time, and in-situ observation characteristics. In establishing a permanent, reliable, and robust seafloor observatory, a highly reliable cable switching and fault isolation method is essential. After reviewing the advantages and disadvantages of existing switching methods, we propose a novel active switching method for network configuration. Without additional communication path requirements, the switching method provides a way to communicate with a shore station through an existing power transmission path. A coded voltage signal with a distinct sequence is employed as the communication medium to transmit commands. The analysis of the maximum bit frequency of the voltage signals guarantees the accuracy of command recognition. A prototype based on the switching method is built and tested in a laboratory environment, which validated the functionality and reliability of the method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071160 and 52071203)the 333-Key-Industry Talent Project of Jiangsu Scientific Committee(Grant No.JTO 2022-21).
文摘The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.
基金supported by the National Key R&D Program of China (Nos. 2022YFF0711502 and 2021YFC2203502)the National Natural Science Foundation of China (NSFC)(12173077 and 12003062)+6 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region (2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant No. PTYQ2022YZZD01)China National Astronomical Data Center (NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China (MOF)and administrated by the Chinese Academy of Sciences (CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01A360)supported by Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences。
文摘Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.
基金funded by the National Natural Science Foundation of China(NSFC,Grant No.12003068)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009。
文摘Research on the solar magnetic field and its effects on solar dynamo mechanisms and space weather events has benefited from the continual improvements in instrument resolution and measurement frequency.The augmentation and assimilation of historical observational data timelines also play a significant role in understanding the patterns of solar magnetic field variation.Within the realm of astronomical data processing,super-resolution(SR)reconstruction refers to the process of using a substantial corpus of training data to learn the nonlinear mapping between low-resolution(LR)and high-resolution(HR)images,thereby achieving higherresolution astronomical images.This paper is an application study in high-dimensional nonlinear regression.Deep learning models were employed to perform SR modeling on SOHO/MDI magnetograms and SDO/HMI magnetograms,thus reliably achieving resolution enhancement of full-disk SOHO/MDI magnetograms and enhancing the image resolution to obtain more detailed information.For this study,a data set comprising 9717pairs of data from 2010 April to 2011 February was used as the training set,1332 pairs from 2011 March were used as the validation set and 1034 pairs from 2011 April were used as the test set.After data preprocessing,we randomly cropped 128×128 sub-images as the LR cases from the full-disk MDI magnetograms,and the corresponding 512×512 sub-images as HR ones from the HMI full-disk magnetograms for model training.The tests conducted have shown that the study successfully produced reliable 4×SR reconstruction of full-disk MDI magnetograms.The MESR model's results(0.911)were highly correlated with the target HMI magnetographs as indicated by the correlation coefficient values.Furthermore,the method achieved the best PSNR,SSIM,MAE and RMSE values,indicating that the MESR model can effectively reconstruct magnetograms.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12273077,72101068,12373110,and 12103070)National Key Research and Development Program of China under grants(2022YFF0712400,2022YFF0711500)+2 种基金the 14th Five-year Informatization Plan of Chinese Academy of Sciences(CAS-WX2021SF-0204)supported by Astronomical Big Data Joint Research Centerco-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud。
文摘Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.Consequently,there is a pressing need for improved methods to efficiently extract them.This study explores the potential of pre-trained Large Language Models(LLMs)to perform astronomical knowledge entity extraction(KEE)task from astrophysical journal articles using prompts.We propose a prompting strategy called PromptKEE,which includes five prompt elements,and design eight combination prompts based on them.We select four representative LLMs(Llama-2-70B,GPT-3.5,GPT-4,and Claude 2)and attempt to extract the most typical astronomical knowledge entities,celestial object identifiers and telescope names,from astronomical journal articles using these eight combination prompts.To accommodate their token limitations,we construct two data sets:the full texts and paragraph collections of 30 articles.Leveraging the eight prompts,we test on full texts with GPT-4and Claude 2,on paragraph collections with all LLMs.The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks,but their performance varies on the two data sets.Furthermore,we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.Finally,compared to other methods of KEE,LLMs exhibit strong competitiveness in multiple aspects.
基金Project supported by the National Natural Science Foundation of China(No.41676089),the Natural Science Foundation of Zhejiang Province,China(No.LY18E090003)the Fundamental Research Funds for the Central Universities,China(No.2018QNA4005)。
文摘Constant current power transmission is considered a good choice for subsea observatories due to its high resistance to shunt faults. A constant current subsea observatory is planned to be constructed in the East China Sea. We discuss a constant current subsea observatory system used for scientific experiments. The power system and its heat dissipation system are carefully designed. The power conversion method is challenging due to the use of constant current power, which is considerably different from traditional power systems. Thus, we adopt power compensation circuits in the conversion system to obtain a constant 48-V output for science users. A power management system that performs overvoltage protection and real-time monitoring and control of junction box is discussed. An innovative heat dissipation structure of a junction box is designed in consideration of a sealed working environment to extend the useful life of the junction box. Simulations and experiments reveal that the system has high efficiency and stability, especially in long-term applications.
基金supported by the National Natural Science Foundation of China(Grant nos.42242406,42230202)Innovation Fund from Joint Innovation Center of Space Science(Aerospace Shanghai).
文摘Space weather has a remarkable effect on modern human activities,e.g.,communication,navigation,space exploration etc.Space physics study from polar stations is as an important part of the entire solar-terrestrial space,and conducts quantitative research from the perspective of overall space plasma behavior.One of the most important issues is to identify the dominant processes that transfer plasma and momentum from the solar wind to Earth’s magnetosphere.Thus,it is necessary to carry out research for combination the observations from polar ground stations and spacecraft observations in the space.Observations at polar regions can be as a window to the space for satellite traffic controls.The operation of the observation chain―Zhongshan-Taishan-Kunlun Station could monitor polar space debris in a large area with high temporal and spatial resolution.Also,night-time measurements of astronomical seeing at Dome A in Antarctica make it less challenging to locate a telescope above it,thereby giving greater access to the free atmosphere because of a thinner boundary layer.
文摘Although Nigeria is not located within the major seismic zones of the world; over the years,several minor earthquakes have been experienced in some parts of the country.The first widely reported occurrence of an Earth tremor in Nigeria was in 1933.Other events were reported in 1939,1964,1984,1990,1994,1997,2000 and 2006.The intensities of these events ranged from III to VI based on the Modified Mercalli Intensity Scale.Of these events,only the 1984,1990,1994 and 2000 events were instrumentally recorded.They had body wave magnitudes ranging from 4.3 to 4.5,local magnitudes between 3.7 and 4.2,and surface wave magnitudes of 3.7 to 3.9.When these events occurred,there were no functional seismological observatories in Nigeria.However,that has now changed with the establishment of a seismographic network managed by the Centre for Geodesy and Geodynamics(CGG),Toro,Nigeria.Presently,the network has four operational stations equipped with 24-bit 4-channel recorders and broadband 30-second seismometers.Efforts are being made to establish more stations and migrate to real-time collection of seismic data using the general packet radio service(GPRS) technology as well as automatic location of events.Remote sensing,geological and geophysical studies have revealed the presence of a NNE-SSW trending Ifewara-Zungeru fault zone which has been shown to be linked with the Atlantic fracture system.The dynamics of the Atlantic fracture zones have been suggested to be responsible for the seismic activities experienced in the areas.
文摘The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of various sizes,for the recorded magnetic components at different latitudes and latitudes.The observatories we included in our study are USA(Surlari),HON(Honolulu),SBA(Scott Base),KAK(Kakioka),THY(Tihany),UPS(Uppsala),WNG(Wingst)and Yellowknife(YKC).We used the data of these observatories from International Real-time Magnetic Observatory Network(INTERMAGNET)for the geomagnetic storm from October 28-31,2003.We have used for this purpose a series of filtering algorithms,spectral analysis and wavelet with different mother functions at different levels.In the paper,we show the Fourier and wavelet analysis of geomagnetic data recorded at different observatories regarding geomagnetic storms.Fourier analysis hightlights predominant frequencies of magnetic field components.Wavelet analysis provides information about the frequency ranges of magnetic fields,which contain long time intervals for medium frequency information and short time intervals for highlight frequencies,details of the analyzed signals.Also,the wavelet analysis allows us to decompose geomagnetic signals in different waves.The analyses presented are significant for the studies of the geomagnetic storm.The data for the next days after the storm showed a mitigation of the perturbations and a transition to quiet days of the geomagnetic field.
文摘We are playing a lead role for growth of astronomy and its quality teaching and research in Manipur, a State located at northeast India (longitude = 93°58'E;latitude = 24°44'N;altitude = 782 m). We have innovatively designed and constructed three cost effective observatories, each costing a few hundred USD. These observatories are completely different in design and are perfectly usable for doing serious work on astronomical observation and measurements, using small ground-based telescopes. One Celestron CGE1400 telescope is housed with equatorial mounting in one of three constructed observatories and the same observatory has been inducted, since January 2012, as one of the members of the “Orion Project”, which is an international project headquartered at Phoenix, Arizona, USA, dedicated for photometric and spectroscopic observations of five bright variable stars of the Orion constellation. We have been producing high precision BVRI photometric data that match well with those produced by other observatories enrolled in the Orion project. Our photometric data were presented and discussed in the 33rd Annual Conference of the Society for Astronomical Sciences: Symposium on Telescope Science, held at Ontario, California, USA during June 12 - 14, 2014. Further, we could successfully demonstrate them to the entire population of the State and play live shows of the observation of three spectacular astronomical events namely, solar eclipse of 15th January 2010, lunar eclipse of 10th December 2011 and Transit of Venus of June 6, 2012. We have conducted a number of seminars and workshops for training and research in astronomy. In the present paper, we would like describe our self-built observatories, our observational facilities, the BVRI photometric data that we acquired for the Orion project, and other activities undertaken for growth of astronomy activities in the State of Manipur, India.
文摘To automate the process of planning and curating multi-target observation sessions, pysky application builds on the astroplan Python package to identify visible objects during an observation window and produce relevant information about those objects in visual and graphical form. The package calculates object visibility based on a provided time window and observing location as well as maximum airmass and limiting magnitude requested by the user. The pysky application images of the target objects with identifying and astrometric data to provide context for the images. In addition, pysky creates polar plots of each object’s horizontal coordinates, and the images and plots are designed to be shown side-by-side. The package also generates an HTML table of the selected target objects with their related data to relay the entire target list as one. The pysky application draws on a variety of Python packages to collect and process data from databases such as JPL Horizons and SIMBAD. Results for a test event were verified by hand using database web interfaces. The pysky application provides a platform for further integration of automated observation planning with websites and apps to enhance multi-target observation sessions.
文摘This paper presents a method to associate land use/cover with productivity in 16 Agrotech Observatories (AOTs) in Mexico. Compact agricultural areas in Mexico have been identified, which are monitored as to their behavior concerning production and rural productivity in a network of AOTs, which is a compact agricultural area representative of agro-ecological, technological and social conditions in the country. To optimize production and agricultural productivity in compact areas, a multidisciplinary and holistic approach with four lines of activity (agro-ecological, technological, economic, and social), and ten actions are used. The objective of this work was to obtain the land use/cover and productivity of sixteen compact agricultural areas (AOTs) in the Mexican Republic, using panchromatic and multispectral SPOT 5 imagery, in order to provide information to the agricultural sector of the country, and to support decision making contributing to the optimization of production in areas with high actual and potential productivity. As an example, in this paper the land use/cover and productivity “AOT 20 Hidalgo” were described. Currently, it is important to have updated and accurate information to support actions and programs of federal, state and local government for farmers, particularly in compact areas with high agricultural production potential.
基金supported by the State Key Laboratory of Robotics (Grant No. 2009-Z05)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-JS205)the National High Technology Research and Development Program of China (863 Program,Grant No. 2006AA09Z157)
文摘Underwater gliders, which glide through water columns by use of a pair of wings, are efficient long-distance, long-duration marine environment observatory platforms. The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, CAS, is designed for the application of deep-sea environment variables observation. The system components, the mechanical design, and the control system design of the Sea-Wing underwater glider are described in this paper. The pitch and roll adjusting models are derived based on the mechanical design, and the adjusting capabilities for the pitch and roll are analyzed according to the models. Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables. Experimental results of the motion performances of the glider are presented.
基金supported by the National High-Technology Research and Development Program of China(Grant No.2007AA091201-1)
文摘A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/sec Ethemet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethemet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.
基金Supported in part by the Marine S&T Fund of Shandong Province (Grant No. 2018SDKJ0211)part by the Fund of Platform for Technical Innovation Ningbo Research Institute of Zhejiang University (Grant No. NRI-ZJU-2019001)part by the Fundamental Research Funds for the Central Universities (Grant No. 2019XZZX003-07).
文摘Covering about three quarters of the surface area of the earth,the ocean is a critical source of sustenance,medicine,and commerce.However,such vast expanse in both surface area and depth,presents myriad observing challenges for researchers,such as corrosion,attenuation of electromagnetic waves,and high pressure.Ocean observation technologies are progressing from the conventional single node,static and short-term modalities to multiple nodes,dynamic and long-term modalities,to increase the density of both temporal and spatial samplings.Although people’s knowledge of the oceans has been still quite limited,the contributions of many nations cooperating to develop the Global Ocean Observing System(GOOS)have remarkably promoted the development of ocean observing technologies.This paper reviews the typical observing technologies deployed from the sea surface to the seafloor,and discusses the future trend of the ocean observation systems with the docking technology and sustained ocean energy.
基金supported by the National Natural Science Foundation of China (Grant Nos: 61273248 and 61075033)the Natural Science Foundation of Guangdong Province (2014A030313425 and S2011010003348)China Scholarship Council (201706755006) and the Joint Research Fund in Astronomy (U1531242) under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences
文摘With the availability of multi-object spectrometers and the design and operation of some large scale sky surveys, the issue of how to deal with enormous quantities of spectral data efficiently and accurately is becoming more and more important. This work investigates the classification problem of stellar spectra under the assumption that there is no perfect absolute flux calibration, for example, when considering spectra from the Guo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST). The proposed scheme consists of the following two procedures: Firstly, a spectrum is normalized based on a 17 th order polynomial fitting;secondly, a random forest(RF) is utilized to classify the stellar spectra. Experiments on four stellar spectral libraries show that the RF has good classification performance. This work also studied the spectral feature evaluation problem based on RF. The evaluation is helpful in understanding the results of the proposed stellar classification scheme and exploring its potential improvements in the future.