In order to solve the problem of high-speed sampling in OFDM based ultra wide band(UWB) systems, this paper first gives analysis on the applicability of existing compressed sampling methods. Then, on the basis of an e...In order to solve the problem of high-speed sampling in OFDM based ultra wide band(UWB) systems, this paper first gives analysis on the applicability of existing compressed sampling methods. Then, on the basis of an established segmented observation model, it presents an optimized parallel segmented compressed sampling(OPSCS) scheme based on Hadamard matrix. The orthogonal Hadamard matrix is adopted to construct the segmented measurement matrix with any dimensions, thus orthogonal or quasi-orthogonal multiplex observation sequences are obtained, and the restricted isometry property is improved. The optimized orthogonal matching pursuit algorithm is also used for the known sparsity avoiding iterative operation. Researches show that the proposed method can effectively reduce the sampling rate in OFDM-UWB systems, and also has a good ability of noise resisting that it achieves a high system performance better than the existing schemes of compressed sampling and even Nyquist rate sampling.展开更多
Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with ...Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling,an observation bootstrap sampling strategy is designed.The objective is to deal with the adverse influence of observation uncertainty by increasing observations information.Secondly,the strategy is dynamically introduced into the cubature Kalman filter,and the distributed fusion framework of filtering realization is constructed.Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system.Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness.展开更多
A nonlinear state observer design with sampled and delayed output measurements for variable speed and external load torque estimations of SPMSM drive system has been addressed, successfully. Sampled output state predi...A nonlinear state observer design with sampled and delayed output measurements for variable speed and external load torque estimations of SPMSM drive system has been addressed, successfully. Sampled output state predictor is re-initialized at each sampling instant and remains continuous between two sampling instants. Throughout this study, a positive constant to satisfy an upper limit of the sampling period between sampling instants and allowable timing delay in terms of observer parameters has been prepared such that the exponential stable of the closed-loop system is guaranteed, based on Lyapunov stability tools. In order to validate the theoretical results introduced by main fundamental theorem to prove the observer convergence, the proposed sampled-data observer is demonstrated through a sample study application to variable speed SPMSM drive system.展开更多
基金supported by the National Natural Science Foundation of China (No.61302062)the National Natural Science Foundation of China (No.61571244)the Natural Science Foundation of Tianjin for Young Scientist (No.13JCQNJC00900)
文摘In order to solve the problem of high-speed sampling in OFDM based ultra wide band(UWB) systems, this paper first gives analysis on the applicability of existing compressed sampling methods. Then, on the basis of an established segmented observation model, it presents an optimized parallel segmented compressed sampling(OPSCS) scheme based on Hadamard matrix. The orthogonal Hadamard matrix is adopted to construct the segmented measurement matrix with any dimensions, thus orthogonal or quasi-orthogonal multiplex observation sequences are obtained, and the restricted isometry property is improved. The optimized orthogonal matching pursuit algorithm is also used for the known sparsity avoiding iterative operation. Researches show that the proposed method can effectively reduce the sampling rate in OFDM-UWB systems, and also has a good ability of noise resisting that it achieves a high system performance better than the existing schemes of compressed sampling and even Nyquist rate sampling.
基金Supported by the National Natural Science Foundation of China(No.61300214)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(13IRTSTHN021)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher of Henan Province Universities(No.2013GGJS-026)
文摘Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling,an observation bootstrap sampling strategy is designed.The objective is to deal with the adverse influence of observation uncertainty by increasing observations information.Secondly,the strategy is dynamically introduced into the cubature Kalman filter,and the distributed fusion framework of filtering realization is constructed.Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system.Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness.
文摘A nonlinear state observer design with sampled and delayed output measurements for variable speed and external load torque estimations of SPMSM drive system has been addressed, successfully. Sampled output state predictor is re-initialized at each sampling instant and remains continuous between two sampling instants. Throughout this study, a positive constant to satisfy an upper limit of the sampling period between sampling instants and allowable timing delay in terms of observer parameters has been prepared such that the exponential stable of the closed-loop system is guaranteed, based on Lyapunov stability tools. In order to validate the theoretical results introduced by main fundamental theorem to prove the observer convergence, the proposed sampled-data observer is demonstrated through a sample study application to variable speed SPMSM drive system.