Facial recognition has become the most common identity authentication technologies. However, problems such as uneven light and occluded faces have increased the hardness of liveness detection. Nevertheless, there are ...Facial recognition has become the most common identity authentication technologies. However, problems such as uneven light and occluded faces have increased the hardness of liveness detection. Nevertheless, there are a few pieces of research on face liveness detection under occlusion conditions. This paper designs a face recognition technique suitable for different degrees of facial occlusion, which employs the facial datasets of near-infrared(NIR) images and visible(VIS) light images to examine the single-modality detection accuracy rate(experimental control group) and the corresponding high-dimensional features through the residual network(ResNet). Based on the idea of data fusion, we propose two feature fusion methods. The two methods extract and fuse the data of one and two convolutional layers from two single-modality detectors respectively. The fusion of high-dimensional features apply a new ResNet to get the dual-modality detection accuracy. And then, a new ResNet is applied to test the accuracy of dual-modality detection. The experimental results show that the dual-modality face liveness detection model improves face live detection accuracy and robustness compared with the single-modality. The fusion of two-layer features from the single-modality detector can also improve face detection accuracy by utilizing the above-mentioned dual-modality detector, and it doesn’t increase the algorithm’s complexity.展开更多
基金supported by the Science and Technology Project of State Grid Corporation of China(SGHEXT00YJJS1900050)。
文摘Facial recognition has become the most common identity authentication technologies. However, problems such as uneven light and occluded faces have increased the hardness of liveness detection. Nevertheless, there are a few pieces of research on face liveness detection under occlusion conditions. This paper designs a face recognition technique suitable for different degrees of facial occlusion, which employs the facial datasets of near-infrared(NIR) images and visible(VIS) light images to examine the single-modality detection accuracy rate(experimental control group) and the corresponding high-dimensional features through the residual network(ResNet). Based on the idea of data fusion, we propose two feature fusion methods. The two methods extract and fuse the data of one and two convolutional layers from two single-modality detectors respectively. The fusion of high-dimensional features apply a new ResNet to get the dual-modality detection accuracy. And then, a new ResNet is applied to test the accuracy of dual-modality detection. The experimental results show that the dual-modality face liveness detection model improves face live detection accuracy and robustness compared with the single-modality. The fusion of two-layer features from the single-modality detector can also improve face detection accuracy by utilizing the above-mentioned dual-modality detector, and it doesn’t increase the algorithm’s complexity.