The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferro...The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.展开更多
About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between1 cm and 36 cm an...About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between1 cm and 36 cm and in the Zinggs shape diagram plot in the equant and oblate fields.The Corey Shape Factor for most of the samples is close to 0.7,which is common for volcaniclastic material. The physical properties such as density,specific gravity,void ratio,porosity,moisture content and degree of saturation,were determined for 30 pumice samples.Density varies from 0.21 to 0.74 g/cm^3 specific gravity 1.84 to 3.27,void ratio 2.21 to 10.67,porosity 67%to 91%,moisture content during sinking 0.44 to 2.35 and degree of saturation varies from 26.5%to 86%.Binocular and electron microscopy studies reveal that 60%of the vesicles are elongated,30%are spherical and 10%are fibrous.Petrography of the pumices exhibits vitrophyric texture with phenocrysts of feldspars and clinopyroxenes.X-ray diffractrogram and mineral analyses confirm plagioclase to be a major phase, while quartz and orthoclase are not uncommon.Todorokite is commonly present in the ferromanganese oxide coating present over some of the pumices.This paper also delves into some details concerning the controversial origin of the pumices and glass shards in the CIOB.展开更多
Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qin...Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.展开更多
This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indi...This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indian Ocean Basin(CIOB)to address their genetic aspects,classification,growth rate,nature of host sediments and influence of REE in the processes of nodule formation.The nodules from CIOB are mostly either hydrogenetic(metals coming from oxygenated bottom water)and diagenetic(metals coming from suboxic sediment pore water)or a combination of both,depending on the source of supply of metal.However,a number of biogeochemical processes mediate this supply of metals which again changes from time to time,making the nodule growth process highly dynamic.This study suggests that at the initial stage of nodule growth,host sediments do not play much role in controlling the growth processes for which REEs can enter both Mn and Fe oxyhydroxide phases equally.Thus,the bottom water signature is imprinted in these early formed nodules irrespective of their host sediment substrate but with gradual growth and burial in the sediment,the main mode of metal enrichment becomes diagenetic through sediment pore water.This tends to increase the concentration of Mn,Ni and Cu over other elements which are retained in the sediment fraction.Among the REEs,Ce concentration of the nodules shows significant positive anomaly due to variation in redox potential and hence its magnitude can be used to get an idea about the metal enrichment procedure and the genetic type of the nodules.However,based on host sediment only,not much difference is found in the magnitude of Ce anomaly in these nodules.On the other hand,discrimination diagram,based on HFSE and REY chemistry,indicates that most of these nodules are of diagenetic origin under oxic condition with a trend towards hydrogenetic field.Further,the genetic type of the ferromanganese nodules from the CIOB are more effectively differentiated by a combination of their major and trace element concentrations rather than solely based on their REE or HFSE chemistry or host sediment substrate.展开更多
The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 19...The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.展开更多
Remnant ocean basin is a key to understand the plate suturing and subsequent uplift and erosion of orogen. The Bay of Bengal Basin (BOBB) provides a typical example to analyze the remnant ocean basin structures, evo...Remnant ocean basin is a key to understand the plate suturing and subsequent uplift and erosion of orogen. The Bay of Bengal Basin (BOBB) provides a typical example to analyze the remnant ocean basin structures, evolution, and relationships between depositional filling and uplifting of the Himalayan Orogen. Thirty-nine seismic profiles as well as interval velocities of well BODC3 were used to compile isopach maps of the basin. Among the seismic data, 26 seismic profiles were applied to estab- lish 8 cross sections. The cross sections suggest the basin is asymmetric, bounded to the west by the eastern continental margin of India (ECMI) with graben-horst and to the east by the Sunda conver- gence margin dominated by trench-arc system. The BOBB is characterized by a prominent down flex- ure structures caused by huge amount of Bengal fan turbidite sediments accumulation. Our isopach maps and chronology data collected from adjacent regions reveal the initial development and fast southward growth of the Bengal fan were related to the early and major stage uplift and erosion of the Himalayan Orogen, respectively. The BOBB has experienced a critical transition from an ocean basin to a remnant ocean basin at Late Oligocene. Such basin structures and evolution features indicate the BOBB provides whole records of oblique convergence of the India and Asia plates, and the early and major stage evolution of the Himalayan Orogen.展开更多
As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclea...As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclear. To understand the geochemical characteristics and factors controlling REY enrichment in zeolite clay in the deep sea, we conducted mineral identification by XRD, major and trace element measurements by XRF and REY analyses by ICP-MS on a 1.4-m-long sediment core(GC02) located in the Central Indian Oceanic Basin(CIOB). The main findings include:(1) the core sediments in GC02 possess elevated REY contents and exhibited a strong negative Ce anomaly, an apparent MREE bulge and positive Y anomaly. These were comparable with typical REY-rich clays in the Pacific Ocean, indicating the similar REY enrichment mechanism and the presence of REY-rich clays in the CIOB;(2) in comparison with the dataset from the Wharton Basin and DSDP site 213, the higher content of REY and stronger PAAS(Post Archean Australian Shale) normalization patterns in the GC02 sediments were likely caused by the weaker impact of terrigenous materials of GC02. The CIOB was suggested to be a promising place hosting REY rich pelagic sediments.展开更多
The tropical Indian Ocean (TIO) displays a uniform basin-wide warming or cooling in sea surface temperature (SST) during the decay year of E1 Nifio-Southern Oscillation (ENSO) events. This warming or cooling is ...The tropical Indian Ocean (TIO) displays a uniform basin-wide warming or cooling in sea surface temperature (SST) during the decay year of E1 Nifio-Southern Oscillation (ENSO) events. This warming or cooling is called the tropical Indian Ocean Basin Mode (IOBM). Recent studies showed that the IOBM dominates the interannual variability of the TIO SST and has impacts on the tropical climate from the TIO to the western Pacific. Analyses on a 148-year-long monthly coral δ28O record from the Seychelles Islands demonstrate that the Seychelles coral δ18O not only is associated with the local SST but also indicates the interannul variability of the basin-wide SST in the TIO. Moreover, the Seychelles coral δ180 shows a dominant period of 3-7 years that well represents the variability of the IOBM, which in return is modulated by the inter-decadal climate variability The correlation between the Seychelles coral dlSO and the SST reveals that the coral δ18O lags the SST in the eastern equato- rial Pacific by five months and reaches its peak in the spring following the mature phase of ENSO. The spatial pattern of the first EOF mode indicates that the Seychelles Islands are located at the crucial place of the IOBM. Thus, the Seychelles coral δ80 could be used as a proxy of the IOBM to investigate the ENSO teleconnection on the TIO in terms of long-time climate variability.展开更多
Based on the reanalysis data of monthly mean sea surface temperature (SST) from British Hadley Center and ozone mass mixing ratio from National Aeronautics and Space Administration (NASA) during 1980-2015, two indexes...Based on the reanalysis data of monthly mean sea surface temperature (SST) from British Hadley Center and ozone mass mixing ratio from National Aeronautics and Space Administration (NASA) during 1980-2015, two indexes IOBI and IODI of the main modes characterizing SST changes in the tropical Indian Ocean——Indian Ocean Basin (IOB) and Indian Ocean Dipole (IOD) were calculated firstly, and then the correlation of SST anomaly (SSTA) in the tropical Indian Ocean and ozone mass mixing ratio in the stratosphere over East Asia from 1980 to 2015 was analyzed. Besides, the impact of SST changes in the tropical Indian Ocean on the distribution of ozone layer in East Asia was discussed. The results show that SST changes in the tropical Indian Ocean had significant effects on stratospheric ozone distribution in East Asia, and it was consistent with the temporal changes of IOB and IOD. IOBI and IODI had a certain correlation with stratospheric ozone changes in East Asia, with a particularly significant correlation in the lower stratosphere (70 hPa) and middle stratosphere (40 hPa) especially during spring and autumn.展开更多
The rifting and occurrence of limited oceanic basin at southern margin of Qinling separated south Qinling from Yangtze Block in late Paleozoic. Detailed sedimentary studies were carried out at two localities at southe...The rifting and occurrence of limited oceanic basin at southern margin of Qinling separated south Qinling from Yangtze Block in late Paleozoic. Detailed sedimentary studies were carried out at two localities at southern flank of this rift-limited oceanic basin zone. and depositional architectures were then established accordingly. The results show that tectono-sedimentary stories are differing in different positions but clearly demonstrate spatial development of the rift. It is obvious that the rift in west part of Mianlue underwent two developmentary phases, early rapid subsidence and late slow subsidence, and there occurred breakup unconformity between the seccessions of the two subsidence phases. Combined with the data of structural, geochemical and chronological studies on the ophiolitic complex within the Mianlue zone. it is demonstrated that the rifting-drifting transition occurred, leading to the development of limited oceanic basin during the late Paleazoic. Spatial and temporal evolution of the rift-limited oceanic basin zone am be well correlated with Paleo-Tethyside, indicating their genetic linkage.展开更多
On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which h...On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.展开更多
The late Quaternary paleoceanographic changes in the western Arctic Ocean are revealed by quan- titative studies of foraminiferal abundance, ice-rafted detritus (IRD) and its mineralogical and petrological compositi...The late Quaternary paleoceanographic changes in the western Arctic Ocean are revealed by quan- titative studies of foraminiferal abundance, ice-rafted detritus (IRD) and its mineralogical and petrological compositions, planktonic Neogloboquadrina pachyderma (sin.) (Nps)-δ18O and -δ13C, biogenic and non-biogenic components in Core M03 token from the Chukchi Basin during the Sec- ond Chinese National Arctic Expedition cruise. Seven IRD events appeared at MIS 7, 5, 3 and 1. These IRD were carried in massive icebergs, which were exported to the Beaufort Sea through the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, and then transported into the Chukchi Basin by the Beaufort Gyre. Low IRD deposition occurred during the glacial times when more extended ice cover and weakened Beaufort Gyre, while the open water condition and the intensified Beaufort Gyre during interglacial periods favored the IRD deposition. Therefore, the IRD events not only indicate the provenance of coarser detritus and ice export events, but also reflect the evolutionary histories of the Beaufort Gyre and North American ice sheet. Seven light Nps-δ18O and -δ13C excursions could respond to enhanced rates of sea ice formation resulting in the pro- duction and sinking of isotopically light brines, but was irrelevant to the warm Atlantic water and freshwater inputs. Whereas, the heavy Nps-δ18O and -δ13C values separately reflect the lessened Arctic freshwater and Pacific water, and well-ventilated surface water from the continental shelf and halocline water. Variations of CaCO3 content and planktonic foraminiferal abundance during the interglacial and glacial periods can demonstrate the incremental or diminishing input of the Atlantic water, while the total organic carbon (TOC) and opal contents increased and decreased during the glacial and interglacial periods, respectively, which could be related to the TOC degradation, opal dissolution and redox conditions of interface between the bottom water and sediments.展开更多
The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the pe...The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.展开更多
A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure ...A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure exists in the upper layer of the southern Canada Basin,which is absolutely different from the Cold Halocline Layer (CHL) in the Eurasian Basin. ThePacific-origin water is the primary factor in the formation of the double-halocline structure. Theupper halocline lies between the summer modification and the winter modification of thePacific-origin water while the lower halocline results from the Pacific-origin water overlying uponthe Atlantic-origin water. Both haloclines are all the year-round although seasonal and interannualvariations have been detected in the historical data.展开更多
Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surfa...Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surface layer, subsurface layer, N2O maximum layer, and deep water. Simulations were made to find out the most important factors that regulate the N2O distribution patterns in different layers of both sites. The results showed that in the surface water, N2O was more understaturated in the ISSO than the BSB. This phenom- enon in the surface water of ISSO may result from ice melt water intrusion and northeastward transport of the Antarctic surface water. Results of the rough estimation of air-sea fluxes during the expedition were (-0.34±0.07)-(-0.64±0.13) μmol/(m2·d) and (-1.47±0.42)-(-1.77±0.51) μmol/(m-2·d) for the BSB and the ISSO, respectively. Strongly stratified surface layer and temperature minimum layer restricted exchange across the thermocline. The N2O maximum existed in higher concentration and deeper in the BSB than the ISSO, but their contribution to the upper layer by eddy diffusions was negligible. In deep waters, a concentration difference of 5 nmol/L N2O between these two sites was found, which suggested that N2O production occurred during thermohaline circulation. N2O may be a useful tracer to study important large-scale hydrographic processes.展开更多
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippin...Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.展开更多
基金the project "Surveys for Polymetallic Nodules" project funded by Ministry of Earth Sciences, (previously Department of Ocean Development), New DelhiPD acknowledges the Councilof Scientific and Industrial Research, New Delhi, for financial assistance in the form of a Research Fellowship
文摘The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.
基金the financial assistance provided under the CSIR(New Delhi) Fellowship scheme
文摘About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between1 cm and 36 cm and in the Zinggs shape diagram plot in the equant and oblate fields.The Corey Shape Factor for most of the samples is close to 0.7,which is common for volcaniclastic material. The physical properties such as density,specific gravity,void ratio,porosity,moisture content and degree of saturation,were determined for 30 pumice samples.Density varies from 0.21 to 0.74 g/cm^3 specific gravity 1.84 to 3.27,void ratio 2.21 to 10.67,porosity 67%to 91%,moisture content during sinking 0.44 to 2.35 and degree of saturation varies from 26.5%to 86%.Binocular and electron microscopy studies reveal that 60%of the vesicles are elongated,30%are spherical and 10%are fibrous.Petrography of the pumices exhibits vitrophyric texture with phenocrysts of feldspars and clinopyroxenes.X-ray diffractrogram and mineral analyses confirm plagioclase to be a major phase, while quartz and orthoclase are not uncommon.Todorokite is commonly present in the ferromanganese oxide coating present over some of the pumices.This paper also delves into some details concerning the controversial origin of the pumices and glass shards in the CIOB.
基金China National Natural Science Foundation Grant No.49290100
文摘Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.
基金the support of CSIR Senior Research Fellowship,Indiaa part of the“Polymetallic Nodule:Survey and Exploration”project(GAP 2175)supported by Ministry of Earth Sciences,Govt.of India.This is NIO's contribution No.6633。
文摘This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indian Ocean Basin(CIOB)to address their genetic aspects,classification,growth rate,nature of host sediments and influence of REE in the processes of nodule formation.The nodules from CIOB are mostly either hydrogenetic(metals coming from oxygenated bottom water)and diagenetic(metals coming from suboxic sediment pore water)or a combination of both,depending on the source of supply of metal.However,a number of biogeochemical processes mediate this supply of metals which again changes from time to time,making the nodule growth process highly dynamic.This study suggests that at the initial stage of nodule growth,host sediments do not play much role in controlling the growth processes for which REEs can enter both Mn and Fe oxyhydroxide phases equally.Thus,the bottom water signature is imprinted in these early formed nodules irrespective of their host sediment substrate but with gradual growth and burial in the sediment,the main mode of metal enrichment becomes diagenetic through sediment pore water.This tends to increase the concentration of Mn,Ni and Cu over other elements which are retained in the sediment fraction.Among the REEs,Ce concentration of the nodules shows significant positive anomaly due to variation in redox potential and hence its magnitude can be used to get an idea about the metal enrichment procedure and the genetic type of the nodules.However,based on host sediment only,not much difference is found in the magnitude of Ce anomaly in these nodules.On the other hand,discrimination diagram,based on HFSE and REY chemistry,indicates that most of these nodules are of diagenetic origin under oxic condition with a trend towards hydrogenetic field.Further,the genetic type of the ferromanganese nodules from the CIOB are more effectively differentiated by a combination of their major and trace element concentrations rather than solely based on their REE or HFSE chemistry or host sediment substrate.
文摘The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.
基金financially supported by the National Science and Technology Major Project of China(No.2011ZX05030-002-003)
文摘Remnant ocean basin is a key to understand the plate suturing and subsequent uplift and erosion of orogen. The Bay of Bengal Basin (BOBB) provides a typical example to analyze the remnant ocean basin structures, evolution, and relationships between depositional filling and uplifting of the Himalayan Orogen. Thirty-nine seismic profiles as well as interval velocities of well BODC3 were used to compile isopach maps of the basin. Among the seismic data, 26 seismic profiles were applied to estab- lish 8 cross sections. The cross sections suggest the basin is asymmetric, bounded to the west by the eastern continental margin of India (ECMI) with graben-horst and to the east by the Sunda conver- gence margin dominated by trench-arc system. The BOBB is characterized by a prominent down flex- ure structures caused by huge amount of Bengal fan turbidite sediments accumulation. Our isopach maps and chronology data collected from adjacent regions reveal the initial development and fast southward growth of the Bengal fan were related to the early and major stage uplift and erosion of the Himalayan Orogen, respectively. The BOBB has experienced a critical transition from an ocean basin to a remnant ocean basin at Late Oligocene. Such basin structures and evolution features indicate the BOBB provides whole records of oblique convergence of the India and Asia plates, and the early and major stage evolution of the Himalayan Orogen.
基金supported by the National Natural Science Foundation of China(41773005)China Ocean Mineral Resources R&D Association(COMRA)Research Program(DY125-11-R-01,DY125-22-02),the Research Center for Air Pollution and Health(RCAPH)of Zhejiang University
文摘As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclear. To understand the geochemical characteristics and factors controlling REY enrichment in zeolite clay in the deep sea, we conducted mineral identification by XRD, major and trace element measurements by XRF and REY analyses by ICP-MS on a 1.4-m-long sediment core(GC02) located in the Central Indian Oceanic Basin(CIOB). The main findings include:(1) the core sediments in GC02 possess elevated REY contents and exhibited a strong negative Ce anomaly, an apparent MREE bulge and positive Y anomaly. These were comparable with typical REY-rich clays in the Pacific Ocean, indicating the similar REY enrichment mechanism and the presence of REY-rich clays in the CIOB;(2) in comparison with the dataset from the Wharton Basin and DSDP site 213, the higher content of REY and stronger PAAS(Post Archean Australian Shale) normalization patterns in the GC02 sediments were likely caused by the weaker impact of terrigenous materials of GC02. The CIOB was suggested to be a promising place hosting REY rich pelagic sediments.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB950302,2012CB955603,2013CB-956102,2010CB950101)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010103)
文摘The tropical Indian Ocean (TIO) displays a uniform basin-wide warming or cooling in sea surface temperature (SST) during the decay year of E1 Nifio-Southern Oscillation (ENSO) events. This warming or cooling is called the tropical Indian Ocean Basin Mode (IOBM). Recent studies showed that the IOBM dominates the interannual variability of the TIO SST and has impacts on the tropical climate from the TIO to the western Pacific. Analyses on a 148-year-long monthly coral δ28O record from the Seychelles Islands demonstrate that the Seychelles coral δ18O not only is associated with the local SST but also indicates the interannul variability of the basin-wide SST in the TIO. Moreover, the Seychelles coral δ180 shows a dominant period of 3-7 years that well represents the variability of the IOBM, which in return is modulated by the inter-decadal climate variability The correlation between the Seychelles coral dlSO and the SST reveals that the coral δ18O lags the SST in the eastern equato- rial Pacific by five months and reaches its peak in the spring following the mature phase of ENSO. The spatial pattern of the first EOF mode indicates that the Seychelles Islands are located at the crucial place of the IOBM. Thus, the Seychelles coral δ80 could be used as a proxy of the IOBM to investigate the ENSO teleconnection on the TIO in terms of long-time climate variability.
基金Supported by the National Natural Science Foundation of China(41275072,41365007)(Key)Project for Applied Basic Research of Yunnan Province(2011FA031).
文摘Based on the reanalysis data of monthly mean sea surface temperature (SST) from British Hadley Center and ozone mass mixing ratio from National Aeronautics and Space Administration (NASA) during 1980-2015, two indexes IOBI and IODI of the main modes characterizing SST changes in the tropical Indian Ocean——Indian Ocean Basin (IOB) and Indian Ocean Dipole (IOD) were calculated firstly, and then the correlation of SST anomaly (SSTA) in the tropical Indian Ocean and ozone mass mixing ratio in the stratosphere over East Asia from 1980 to 2015 was analyzed. Besides, the impact of SST changes in the tropical Indian Ocean on the distribution of ozone layer in East Asia was discussed. The results show that SST changes in the tropical Indian Ocean had significant effects on stratospheric ozone distribution in East Asia, and it was consistent with the temporal changes of IOB and IOD. IOBI and IODI had a certain correlation with stratospheric ozone changes in East Asia, with a particularly significant correlation in the lower stratosphere (70 hPa) and middle stratosphere (40 hPa) especially during spring and autumn.
基金Project supported by the National Natural Science Foundation of China.
文摘The rifting and occurrence of limited oceanic basin at southern margin of Qinling separated south Qinling from Yangtze Block in late Paleozoic. Detailed sedimentary studies were carried out at two localities at southern flank of this rift-limited oceanic basin zone. and depositional architectures were then established accordingly. The results show that tectono-sedimentary stories are differing in different positions but clearly demonstrate spatial development of the rift. It is obvious that the rift in west part of Mianlue underwent two developmentary phases, early rapid subsidence and late slow subsidence, and there occurred breakup unconformity between the seccessions of the two subsidence phases. Combined with the data of structural, geochemical and chronological studies on the ophiolitic complex within the Mianlue zone. it is demonstrated that the rifting-drifting transition occurred, leading to the development of limited oceanic basin during the late Paleazoic. Spatial and temporal evolution of the rift-limited oceanic basin zone am be well correlated with Paleo-Tethyside, indicating their genetic linkage.
文摘On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.
基金The National Basic Research Program of China under contract No.G2007CB815903the National Natural Science Foundation of China under contract No.41030859+1 种基金Chinese IPY Program (2007-2009)China Geological Survey projectH[2011]01-14-04
文摘The late Quaternary paleoceanographic changes in the western Arctic Ocean are revealed by quan- titative studies of foraminiferal abundance, ice-rafted detritus (IRD) and its mineralogical and petrological compositions, planktonic Neogloboquadrina pachyderma (sin.) (Nps)-δ18O and -δ13C, biogenic and non-biogenic components in Core M03 token from the Chukchi Basin during the Sec- ond Chinese National Arctic Expedition cruise. Seven IRD events appeared at MIS 7, 5, 3 and 1. These IRD were carried in massive icebergs, which were exported to the Beaufort Sea through the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, and then transported into the Chukchi Basin by the Beaufort Gyre. Low IRD deposition occurred during the glacial times when more extended ice cover and weakened Beaufort Gyre, while the open water condition and the intensified Beaufort Gyre during interglacial periods favored the IRD deposition. Therefore, the IRD events not only indicate the provenance of coarser detritus and ice export events, but also reflect the evolutionary histories of the Beaufort Gyre and North American ice sheet. Seven light Nps-δ18O and -δ13C excursions could respond to enhanced rates of sea ice formation resulting in the pro- duction and sinking of isotopically light brines, but was irrelevant to the warm Atlantic water and freshwater inputs. Whereas, the heavy Nps-δ18O and -δ13C values separately reflect the lessened Arctic freshwater and Pacific water, and well-ventilated surface water from the continental shelf and halocline water. Variations of CaCO3 content and planktonic foraminiferal abundance during the interglacial and glacial periods can demonstrate the incremental or diminishing input of the Atlantic water, while the total organic carbon (TOC) and opal contents increased and decreased during the glacial and interglacial periods, respectively, which could be related to the TOC degradation, opal dissolution and redox conditions of interface between the bottom water and sediments.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102)the NSFC (Grant Nos. 41375094 and 41406028)+1 种基金the "973" project (Grant No. 2012CB956000)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)
文摘The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.
基金supported by the National Natural Science Foundation of China under contract Nos 40306005 and 40376007.
文摘A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure exists in the upper layer of the southern Canada Basin,which is absolutely different from the Cold Halocline Layer (CHL) in the Eurasian Basin. ThePacific-origin water is the primary factor in the formation of the double-halocline structure. Theupper halocline lies between the summer modification and the winter modification of thePacific-origin water while the lower halocline results from the Pacific-origin water overlying uponthe Atlantic-origin water. Both haloclines are all the year-round although seasonal and interannualvariations have been detected in the historical data.
基金The National Natural Science Foundation of China(NSFC)under contract Nos 40906102 and 41230529the CHINARE under contract Nos 2012-2015(-01-04-02),2012-2015(01-02-01)and 2012-2015(03-04-02)the CAA International Cooperation Projects under contract Nos IC201201 and IC201308
文摘Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surface layer, subsurface layer, N2O maximum layer, and deep water. Simulations were made to find out the most important factors that regulate the N2O distribution patterns in different layers of both sites. The results showed that in the surface water, N2O was more understaturated in the ISSO than the BSB. This phenom- enon in the surface water of ISSO may result from ice melt water intrusion and northeastward transport of the Antarctic surface water. Results of the rough estimation of air-sea fluxes during the expedition were (-0.34±0.07)-(-0.64±0.13) μmol/(m2·d) and (-1.47±0.42)-(-1.77±0.51) μmol/(m-2·d) for the BSB and the ISSO, respectively. Strongly stratified surface layer and temperature minimum layer restricted exchange across the thermocline. The N2O maximum existed in higher concentration and deeper in the BSB than the ISSO, but their contribution to the upper layer by eddy diffusions was negligible. In deep waters, a concentration difference of 5 nmol/L N2O between these two sites was found, which suggested that N2O production occurred during thermohaline circulation. N2O may be a useful tracer to study important large-scale hydrographic processes.
基金The National Natural Science Foundation of China under contract Nos 41322036,41230960,40906034,41276003 and 41176058China Ocean Mineral Resources R&D Association(COMRA)under contract No.DY125-12-R-05
文摘Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.