A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/s...A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/sec Ethemet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethemet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.展开更多
In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migr...In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.展开更多
Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections ...Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.展开更多
Due to the shortage of suitable research methods for real-time and long-term observation of oceans,an innovative approach that can provide abundant power and wide bandwidth is being developed worldwide for undersea in...Due to the shortage of suitable research methods for real-time and long-term observation of oceans,an innovative approach that can provide abundant power and wide bandwidth is being developed worldwide for undersea instruments.In this paper,we develop a direct current(DC) power system which is applied to a multi-node cabled ocean observatory system named ZERO(Zhejiang University Experimental and Research Observatory).The system addresses significant issues ranging from terrestrial facility to subsea infrastructure,and focuses on using appropriate methods to deal with several key challenges,including delivery,conversion,distribution,and management of power,and heat dissipation in pressure vessels.A basic laboratory platform consisting of a shore station,a primary node in a water tank,and a secondary node in a deep-sea simulation chamber under 42 MPa pressure was built and fully tested.An improved secondary node was deployed in Monterey Bay in California for a deep-sea trial.An 11-day laboratory test and a half-year sea trial proved that the DC power system based on our proposed methods is viable for the underwater multi-node observatory system.展开更多
基金supported by the National High-Technology Research and Development Program of China(Grant No.2007AA091201-1)
文摘A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with l Gigabit/sec Ethemet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethemet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.
基金supported by National Natural Science Foundation of China(Nos.41904101,41774133)Natural Science Foundation of Shandong Province(ZR2019QD004)+1 种基金Fundamental Research Funds for the Central Universities(No.19CX02010A)the Open Funds of SINOPEC Key Laboratory of Geophysics(Nos.wtyjy-wx2019-01-03,wtyjywx2018-01-06)
文摘In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.
文摘Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.
基金Project (No. 2007AA091201-1) supported by the National High-Tech R&D (863) Program of China
文摘Due to the shortage of suitable research methods for real-time and long-term observation of oceans,an innovative approach that can provide abundant power and wide bandwidth is being developed worldwide for undersea instruments.In this paper,we develop a direct current(DC) power system which is applied to a multi-node cabled ocean observatory system named ZERO(Zhejiang University Experimental and Research Observatory).The system addresses significant issues ranging from terrestrial facility to subsea infrastructure,and focuses on using appropriate methods to deal with several key challenges,including delivery,conversion,distribution,and management of power,and heat dissipation in pressure vessels.A basic laboratory platform consisting of a shore station,a primary node in a water tank,and a secondary node in a deep-sea simulation chamber under 42 MPa pressure was built and fully tested.An improved secondary node was deployed in Monterey Bay in California for a deep-sea trial.An 11-day laboratory test and a half-year sea trial proved that the DC power system based on our proposed methods is viable for the underwater multi-node observatory system.