期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sea ice thickness estimation in the Bohai Sea using geostationary ocean color imager data 被引量:7
1
作者 LIU Wensong SHENG Hui ZHANG Xi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期105-112,共8页
A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea ... A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea during the winter of 2014 to 2015. First of all, a model is given between the GOCI shortwave broadband albedo and the reflectance of each band with high temporal resolution GOCI data. Then, the relationship model between the sea ice thickness and the GOCI shortwave broadband albedo is established and applied to the thickness extraction of the sea ice in the Bohai Sea. Finally, the sea ice thickness extraction method is tested by the results based on the MODIS data, thermodynamic empirical models (Lebedev and Zubov), and the in situ ice thickness data. The test results not only indicated that the sea ice thickness retrieval method based on the GOCI data was a good correlation (r2〉0.66) with the sea ice thickness retrieved by the MODIS and thermodynamic empirical models, but also that the RMS is only 6.82 cm different from the thickness of the sea ice based on the GOCI and in situ data. 展开更多
关键词 sea ice thickness geostationary ocean color imager Bohai Sea
下载PDF
Ulva prolifera subpixel mapping with multiple-feature decision fusion
2
作者 Jianhua WAN Xianci WAN +5 位作者 Lie SUN Mingming XU Hui SHENG Shanwei LIU Bin ZOU Qimao WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期865-880,共16页
The unavoidable nature of Ulva prolifera mixed pixel in low-resolution remote sensing images would result in rough boundary of U.prolifera patches,omission of tiny patches,and overestimation of coverage area.The decom... The unavoidable nature of Ulva prolifera mixed pixel in low-resolution remote sensing images would result in rough boundary of U.prolifera patches,omission of tiny patches,and overestimation of coverage area.The decomposition of U.prolifera mixed pixel addresses the issue of coverage area overestimation,and the remaining problems can be alleviated by subpixel mapping(SPM).Due to the drift and dissipation of U.prolifera,a suitable SPM method is the single image-based unsupervised method.However,the method has difficulties in detail reconstruction,insufficient learning of spectral information,and SPM error introduced by abundance deviation.Therefore,we proposed a multiple-feature decision fusion SPM(MFDFSPM)method.It involves three branches to obtain the spatial,abundance,and spectral features of U.prolifera while considers multi-feature information using the fusion strategy.Experiments on the Geostationary Ocean Color Imager images in the Yellow Sea of China indicate that the MFDFSPM overperforms several typical U.prolifera SPM methods in higher accuracy and stronger robustness in both SPM and abundance calculation,which produced subpixel map with more detailed spatial information and less noise. 展开更多
关键词 Ulva prolifera subpixel mapping multiple-feature decision fusion abundance geostationary ocean color imager(GOCI)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部