期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Installation Process and Uplift Resistance for An Integrated Suction Foundation in Deep Ocean
1
作者 李英 杨树耕 于书铭 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期33-46,共14页
A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant sto... A concept design, named integrated suction foundation, is proposed for a tension leg platform(TLP) in deep ocean. The most important improvement in comparing with the traditional one is that a pressure-resistant storage module is designed. It utilizes the high hydrostatic pressure in deep ocean to drive water into the module to generate negative pressure for bucket suction. This work aims to further approve the feasibility of the concept design in the aspect of penetration installation and the uplift force in-place. Seepage is generated during suction penetration, and can have both positive and negative effects on penetration process. To study the effect of seepage on the penetration process of the integrated suction foundation, finite element analysis(FEA) is carried out in this work. In particular, an improved methodology to calculate the penetration resistance is proposed for the integrated suction foundation with respect to the reduction factor of penetration resistance. The maximum allowable negative pressure during suction penetration is calculated with the critical hydraulic gradient method through FEA. The simulation results of the penetration process show that the integrated suction foundation can be installed safely. Moreover, the uplift resistance of the integrated suction foundation is calculated and the feasibility of the integrated suction foundation working on-site is verified. In all, the analysis in this work further approves the feasibility of the integrated suction foundation for TLPs in deep ocean applications. 展开更多
关键词 integrated suction foundation penetration resistance TLP finite element analysis deep ocean
下载PDF
Geochemical characteristics of REY-rich pelagic sediments from the GC02 in central Indian Ocean Basin 被引量:16
2
作者 张霄宇 陶春辉 +3 位作者 石学法 李怀明 黄牧 黄大松 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第10期1047-1058,共12页
As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclea... As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclear. To understand the geochemical characteristics and factors controlling REY enrichment in zeolite clay in the deep sea, we conducted mineral identification by XRD, major and trace element measurements by XRF and REY analyses by ICP-MS on a 1.4-m-long sediment core(GC02) located in the Central Indian Oceanic Basin(CIOB). The main findings include:(1) the core sediments in GC02 possess elevated REY contents and exhibited a strong negative Ce anomaly, an apparent MREE bulge and positive Y anomaly. These were comparable with typical REY-rich clays in the Pacific Ocean, indicating the similar REY enrichment mechanism and the presence of REY-rich clays in the CIOB;(2) in comparison with the dataset from the Wharton Basin and DSDP site 213, the higher content of REY and stronger PAAS(Post Archean Australian Shale) normalization patterns in the GC02 sediments were likely caused by the weaker impact of terrigenous materials of GC02. The CIOB was suggested to be a promising place hosting REY rich pelagic sediments. 展开更多
关键词 rare earth elements sedimentary minerals GC02 core sediment central Indian ocean Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部