多个模型被用于印度洋长鳍金枪鱼(Thunnus alalunga)的资源评估,但这些模型的评估结果均存在较大的不确定性,为此,本文对影响印度洋长鳍金枪鱼资源评估的因素进行了分析。分析结果认为:(1)由于渔业数据存在不报、漏报或混报及采样样本...多个模型被用于印度洋长鳍金枪鱼(Thunnus alalunga)的资源评估,但这些模型的评估结果均存在较大的不确定性,为此,本文对影响印度洋长鳍金枪鱼资源评估的因素进行了分析。分析结果认为:(1)由于渔业数据存在不报、漏报或混报及采样样本数过低、采样协议出现变化等问题,造成印度洋长鳍金枪鱼渔业的渔获量、体长组成或年龄组成数据存在质量问题;(2)尽管对单位捕捞努力渔获量(catch per unit effort,CPUE)进行了标准化,但目标鱼种变化及捕捞努力量空间分布变化仍严重影响了标准化CPUE数据的质量;(3)印度洋长鳍金枪鱼的种群生态学及繁殖生物学研究仍比较薄弱,种群结构、繁殖、生长、自然死亡信息比较缺乏,在资源评估中,相关参数设置需借用其他洋区的研究结果;(4)海洋环境对印度洋长鳍金枪鱼的资源变动与空间分布具有显著影响,但评估模型较少考虑海洋环境的影响。由于上述问题的存在,导致当前评估结果存在较大不确定性。未来,应继续探索提高资源评估质量的方法,同时研究建立管理策略评价框架,以避免渔业资源评估结果的不确定性对该渔业可持续开发的影响。展开更多
We developed an approach that integrates generalized additive model(GAM) and neural network model(NNM)for projecting the distribution of Argentine shortfin squid(Illex argentinus). The data for this paper was ba...We developed an approach that integrates generalized additive model(GAM) and neural network model(NNM)for projecting the distribution of Argentine shortfin squid(Illex argentinus). The data for this paper was based on commercial fishery data and relevant remote sensing environmental data including sea surface temperature(SST), sea surface height(SSH) and chlorophyll a(Chl a) from January to June during 2003 to 2011. The GAM was used to identify the significant oceanographic variables and establish their relationships with the fishery catch per unit effort(CPUE). The NNM with the GAM identified significant variables as input vectors was used for predicting spatial distribution of CPUE. The GAM was found to explain 53.8% variances for CPUE. The spatial variables(longitude and latitude) and environmental variables(SST, SSH and Chl a) were significant. The CPUE had nonlinear relationship with SST and SSH but a linear relationship with Chl a. The NNM was found to be effective and robust in the projection with low mean square errors(MSE) and average relative variances(ARV).The integrated approach can predict the spatial distribution and explain the migration pattern of Illex argentinus in the Southwest Atlantic Ocean.展开更多
文摘多个模型被用于印度洋长鳍金枪鱼(Thunnus alalunga)的资源评估,但这些模型的评估结果均存在较大的不确定性,为此,本文对影响印度洋长鳍金枪鱼资源评估的因素进行了分析。分析结果认为:(1)由于渔业数据存在不报、漏报或混报及采样样本数过低、采样协议出现变化等问题,造成印度洋长鳍金枪鱼渔业的渔获量、体长组成或年龄组成数据存在质量问题;(2)尽管对单位捕捞努力渔获量(catch per unit effort,CPUE)进行了标准化,但目标鱼种变化及捕捞努力量空间分布变化仍严重影响了标准化CPUE数据的质量;(3)印度洋长鳍金枪鱼的种群生态学及繁殖生物学研究仍比较薄弱,种群结构、繁殖、生长、自然死亡信息比较缺乏,在资源评估中,相关参数设置需借用其他洋区的研究结果;(4)海洋环境对印度洋长鳍金枪鱼的资源变动与空间分布具有显著影响,但评估模型较少考虑海洋环境的影响。由于上述问题的存在,导致当前评估结果存在较大不确定性。未来,应继续探索提高资源评估质量的方法,同时研究建立管理策略评价框架,以避免渔业资源评估结果的不确定性对该渔业可持续开发的影响。
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.20155014the National Natural Science Fundation of China under contract No.NSFC31702343
文摘We developed an approach that integrates generalized additive model(GAM) and neural network model(NNM)for projecting the distribution of Argentine shortfin squid(Illex argentinus). The data for this paper was based on commercial fishery data and relevant remote sensing environmental data including sea surface temperature(SST), sea surface height(SSH) and chlorophyll a(Chl a) from January to June during 2003 to 2011. The GAM was used to identify the significant oceanographic variables and establish their relationships with the fishery catch per unit effort(CPUE). The NNM with the GAM identified significant variables as input vectors was used for predicting spatial distribution of CPUE. The GAM was found to explain 53.8% variances for CPUE. The spatial variables(longitude and latitude) and environmental variables(SST, SSH and Chl a) were significant. The CPUE had nonlinear relationship with SST and SSH but a linear relationship with Chl a. The NNM was found to be effective and robust in the projection with low mean square errors(MSE) and average relative variances(ARV).The integrated approach can predict the spatial distribution and explain the migration pattern of Illex argentinus in the Southwest Atlantic Ocean.