This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la...This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.展开更多
This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surf...This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surface. A disposable micro buoy based on narrow-band Internet of things and Beidou positioning function is also developed and used to collect surface hydrodynamic data online. In addition, a web-based public service platform is designed for the analysis and visualization of the data collected by buoys. Combined with the satellite remote sensing data, the study carries a series of marine experiments and studies such as sediment deposition tracking and garbage floating tracking.展开更多
Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensi...Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.展开更多
Ocean satellites have realized multi-satellite networked operation.The HY-1D satellite launched in June 2020 realized networked with HY-1C satellite,and completed the construction of ocean color satellite constellatio...Ocean satellites have realized multi-satellite networked operation.The HY-1D satellite launched in June 2020 realized networked with HY-1C satellite,and completed the construction of ocean color satellite constellation.The HY-2D satellite launched in May 2021 is networked with the on orbit HY-2B and HY-2C satellites to complete the construction of marine dynamic environment satellite constellation.The 1 mC-SAR satellite 01 launched in November 2021 is networked with GF-3,which initially forms the marine monitoring satellite constellation.This year,the networking of 1 mC-SAR satellite 02 with satellite 01 and GF-3 is realized,and the construction of marine monitoring satellite constellation is completed.At present,the ocean satellites have the operational application capabilities of remote sensing investigation,monitoring,evaluation and supervision of marine ecology,marine disaster prevention and reduction,global oceans and Polar Regions,Sea Islands,rights and interests maintenance.展开更多
China’s ocean satellites are divided into three series based on ocean color satellites(HY-1),ocean dynamic environment satellites(HY-2)and ocean monitoring satellites(HY-3).The three series of ocean satellites operat...China’s ocean satellites are divided into three series based on ocean color satellites(HY-1),ocean dynamic environment satellites(HY-2)and ocean monitoring satellites(HY-3).The three series of ocean satellites operate today in a multi-satellite network.The HY-1 D satellite launched in June 2020 and the HY-1 C satellite,already in orbit,realized a network observation capability and completed the formation of the ocean color satellite constellation.The HY-2 D satellite launched in May 2021 joined the HY-2 B and HY-2 C satellites,which have been on orbit already and completed a network observation capability,thus establishing the ocean dynamic environment satellite constellation.The GF-302 satellite(1 m C-SAR 01)launched in November 2021 has networked with GF-3,initially establishing an ocean monitoring satellite constellation,which has finally completed its construction with the launch of the GF-303 satellite(1 m C-SAR 02)in April 2022.The GF-3 three-satellite network effectively boasts a wide capability in applications of satellite data products and services in many fields,such as ocean environmental monitoring,ocean disaster prevention and mitigation,marine scientific research and polar research.展开更多
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
基金Supported by Remote Sensing Support for Offshore Ocean Environment and Polar Sea Ice Early Warning Services(102121201550000009004)。
文摘This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.
基金The National Natural Science Foundation of China under contract No. 41606004。
文摘This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surface. A disposable micro buoy based on narrow-band Internet of things and Beidou positioning function is also developed and used to collect surface hydrodynamic data online. In addition, a web-based public service platform is designed for the analysis and visualization of the data collected by buoys. Combined with the satellite remote sensing data, the study carries a series of marine experiments and studies such as sediment deposition tracking and garbage floating tracking.
文摘Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.
文摘Ocean satellites have realized multi-satellite networked operation.The HY-1D satellite launched in June 2020 realized networked with HY-1C satellite,and completed the construction of ocean color satellite constellation.The HY-2D satellite launched in May 2021 is networked with the on orbit HY-2B and HY-2C satellites to complete the construction of marine dynamic environment satellite constellation.The 1 mC-SAR satellite 01 launched in November 2021 is networked with GF-3,which initially forms the marine monitoring satellite constellation.This year,the networking of 1 mC-SAR satellite 02 with satellite 01 and GF-3 is realized,and the construction of marine monitoring satellite constellation is completed.At present,the ocean satellites have the operational application capabilities of remote sensing investigation,monitoring,evaluation and supervision of marine ecology,marine disaster prevention and reduction,global oceans and Polar Regions,Sea Islands,rights and interests maintenance.
文摘China’s ocean satellites are divided into three series based on ocean color satellites(HY-1),ocean dynamic environment satellites(HY-2)and ocean monitoring satellites(HY-3).The three series of ocean satellites operate today in a multi-satellite network.The HY-1 D satellite launched in June 2020 and the HY-1 C satellite,already in orbit,realized a network observation capability and completed the formation of the ocean color satellite constellation.The HY-2 D satellite launched in May 2021 joined the HY-2 B and HY-2 C satellites,which have been on orbit already and completed a network observation capability,thus establishing the ocean dynamic environment satellite constellation.The GF-302 satellite(1 m C-SAR 01)launched in November 2021 has networked with GF-3,initially establishing an ocean monitoring satellite constellation,which has finally completed its construction with the launch of the GF-303 satellite(1 m C-SAR 02)in April 2022.The GF-3 three-satellite network effectively boasts a wide capability in applications of satellite data products and services in many fields,such as ocean environmental monitoring,ocean disaster prevention and mitigation,marine scientific research and polar research.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.