The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,mos...The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.展开更多
With the rapid development of modern Interferometric Synthetic Aperture Radar(InSAR)missions,SAR instruments with wider coverage can be used to monitor the ground surface deformation from regional to global scale.Howe...With the rapid development of modern Interferometric Synthetic Aperture Radar(InSAR)missions,SAR instruments with wider coverage can be used to monitor the ground surface deformation from regional to global scale.However,the ocean tide loading(OTL)displacement is becoming a primary source of errors.It contributes to a long-wavelength signal in InSAR interferograms,leading to errors from millimeter to centimeter-level in InSAR deformation monitoring,especially over coastal areas.Although the state-of-the-art has applied ocean tide models to mitigate the errors,the difference between them and their impact on InSAR measurements are rarely discussed.In this paper,we compare representative ocean tide models and investigate their effects in the correction of OTL errors.We found that(i)the modeled OTL displacements from different models show little difference over interiors far from the ocean,while disagreement becomes larger over coastal areas;(ii)the magnitude of OTL artifacts may be greater than the atmospheric delays in some coastal areas,and the correction using ocean tide models can effectively attenuate the OTL effects for large-scale InSAR measurements;(iii)when correcting the OTL errors for InSAR measurements,the global model TPXO and FES are recommended because of their better overall performance,while the NAO model performs the worst.The local models with high spatial resolution can help improve the capability of coarse global models in complex topographic areas.展开更多
This paper describes the ocean loading tides corrections of GPS stations in Antarctica, such as the Great Wall station and Zhongshan station. Based on the theory of ocean loading tides, the displacement corrections of...This paper describes the ocean loading tides corrections of GPS stations in Antarctica, such as the Great Wall station and Zhongshan station. Based on the theory of ocean loading tides, the displacement corrections of ocean loading tides on GPS stations in Antarctica are calculated by using the CRS4.0 ocean loading tides model. These corrections are also applied to GPS data proc-essing. The GPS data are analyzed by the GAMIT software with and without these corrections. We compared and analyzed the GPS baseline components to get the differences. The results show that the ocean tidal displacement corrections have obvious effects upon GPS baseline components. Therefore, we should not ignore the ocean loading tides corrections of GPS stations in Antarctica to obtain precise and reliable results.展开更多
By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this pa...By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas.展开更多
Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a ...Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a unique network of gravity tidal stations all over the Chinese mainland,we compare the observed and modeled tidal loading effects on the basis of the most recent global ocean tide models.The results show that the average efficiencies of the ocean tidal loading correction for O_(1),K_(1),M_(2) are 77%,7 s3%and 59%,respectively.The loading correction efficiencies using recent ocean tidal models are better than the 40 years old Schwiderskis model at coastal stations,but relative worse at stations far from ocean.展开更多
Ocean tide loading (OTL) displacements of eight principal constituents at 12 sites in Hong Kong were determined using more than eight years of continuous GPS observations. Parameters of the OTL displacements were esti...Ocean tide loading (OTL) displacements of eight principal constituents at 12 sites in Hong Kong were determined using more than eight years of continuous GPS observations. Parameters of the OTL displacements were estimated using daily GPS solutions obtained with precise point positioning (PPP) technique. The results were compared with predictions from seven latest global ocean tide models. Gravity measurements of OTL in Hong Kong were also used to validate the GPS results. The study shows that the results from both the GPS and gravity measurements agree best with the GOT4.7 and NAO99b models, when the K1 and K2 constituents are excluded. The agreements between the GPS and the model estimates are generally at sub-millimeter level in both the horizontal and vertical directions, except for S2, K2 and K1 constituents that have relatively larger errors. After removing the systematic biases between the GPS and the model estimates, the misfits of M2, S2, N2, O1, P1 and Q1 at all sites are within 0.5 and 1.0 mm in the horizontal and the vertical directions, respectively, whereas K1 and K2 show relatively larger misfits of up to 2.3 mm. Both the GPS and the gravity S2 estimates have large biases with unknown reasons when compared with the modeled values, which needs to be further investigated. The study demonstrates that GPS is capable of estimating the OTL displacements with the same accuracy as the model predictions, especially for coastal areas.展开更多
The response of radial inhomogeneous elastic earth under the action of oceanic tides is studied by use of the combination of convolution integral with spherical harmonic expansion. In the meantime, the effect of ocean...The response of radial inhomogeneous elastic earth under the action of oceanic tides is studied by use of the combination of convolution integral with spherical harmonic expansion. In the meantime, the effect of oceanic tides on gravity, tilt and strain in the mainland of China is estimated, and the accuracy of loading correction is also briefly analysed. Results show that the loading effect along the coast of China cannot be neglected, for gravity it is about 5% of body tides, for tilt it reaches the same magnitude as body tides, for strain about 50%. The result obtained can be used to provide the tidal correction for various precision geodesy. The proposal method may also be applied to the effect of other surface loading except oceanic tides.展开更多
Using tidal potential solar thermal-radiating energy current and the nonlinear effect of the gravity tide as the input function, moreover, considering the ocean tidal species as the input function of the loading effec...Using tidal potential solar thermal-radiating energy current and the nonlinear effect of the gravity tide as the input function, moreover, considering the ocean tidal species as the input function of the loading effect of ocean tide, we make the lumped response analysis of the observational tilt tide in one year. The tilt gravitational tide, the load tide, the radiational tide and the nonlinear tide with the same frequeny are separated off. It is shown that the load tide and the gravitational tide are the same quantity grade, the load tide may spread into inland far away; the solar thermal-radiation has an effect on the tilt tide; there is a little nonlinear tide in the tilt tide, but the nonlinear tide of the ocean tide has the stronger loading effect on the tilt tide than the nonlinear tide brought about by the gravitational tide itself; the lag interval, △τ=41 (h), is the best value in the response analysis. In addition, the harmonic analyses of the tilt tide and the separated tilt tides are made respectively by using j.v model, and their ellipse factors are calculated.展开更多
基金The Shandong Provincial Natural Science Foundation under contract No.ZR2023QD045the National Natural Science Foundation of China under contract Nos 42406026,42076024 and 42106032supported by the Taishan Scholar Program under contract No.tstp20221148。
文摘The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.
基金This work was supported by the Natural Science Foundation of China(grant Nos.42074008,41804005,42174018).
文摘With the rapid development of modern Interferometric Synthetic Aperture Radar(InSAR)missions,SAR instruments with wider coverage can be used to monitor the ground surface deformation from regional to global scale.However,the ocean tide loading(OTL)displacement is becoming a primary source of errors.It contributes to a long-wavelength signal in InSAR interferograms,leading to errors from millimeter to centimeter-level in InSAR deformation monitoring,especially over coastal areas.Although the state-of-the-art has applied ocean tide models to mitigate the errors,the difference between them and their impact on InSAR measurements are rarely discussed.In this paper,we compare representative ocean tide models and investigate their effects in the correction of OTL errors.We found that(i)the modeled OTL displacements from different models show little difference over interiors far from the ocean,while disagreement becomes larger over coastal areas;(ii)the magnitude of OTL artifacts may be greater than the atmospheric delays in some coastal areas,and the correction using ocean tide models can effectively attenuate the OTL effects for large-scale InSAR measurements;(iii)when correcting the OTL errors for InSAR measurements,the global model TPXO and FES are recommended because of their better overall performance,while the NAO model performs the worst.The local models with high spatial resolution can help improve the capability of coarse global models in complex topographic areas.
基金the National 863 Program of China (No.2007AA12Z312)
文摘This paper describes the ocean loading tides corrections of GPS stations in Antarctica, such as the Great Wall station and Zhongshan station. Based on the theory of ocean loading tides, the displacement corrections of ocean loading tides on GPS stations in Antarctica are calculated by using the CRS4.0 ocean loading tides model. These corrections are also applied to GPS data proc-essing. The GPS data are analyzed by the GAMIT software with and without these corrections. We compared and analyzed the GPS baseline components to get the differences. The results show that the ocean tidal displacement corrections have obvious effects upon GPS baseline components. Therefore, we should not ignore the ocean loading tides corrections of GPS stations in Antarctica to obtain precise and reliable results.
基金The Key Knowledge Innovation Project (KZCX3-SW-131), the Hundred Talents Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (40374029)
文摘By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas.
基金funded by The National Natural Science Foundation of China(No.41774015,41704135 and U1939204)National Key Research and Development Project of China(No.2018YFE0206100,2017YFC1500204)。
文摘Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a unique network of gravity tidal stations all over the Chinese mainland,we compare the observed and modeled tidal loading effects on the basis of the most recent global ocean tide models.The results show that the average efficiencies of the ocean tidal loading correction for O_(1),K_(1),M_(2) are 77%,7 s3%and 59%,respectively.The loading correction efficiencies using recent ocean tidal models are better than the 40 years old Schwiderskis model at coastal stations,but relative worse at stations far from ocean.
基金supported by the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (Grant Nos. PolyU5157/05E, PolyU5161/06E)the Scientific Research Foundation of The Hong Kong Polytechnic University (Grant No.GY-F81)the Fundamental Research Funds for the Central Universi-ties (Grant Nos. SWJTU09BR029, SWJTU09BR031)
文摘Ocean tide loading (OTL) displacements of eight principal constituents at 12 sites in Hong Kong were determined using more than eight years of continuous GPS observations. Parameters of the OTL displacements were estimated using daily GPS solutions obtained with precise point positioning (PPP) technique. The results were compared with predictions from seven latest global ocean tide models. Gravity measurements of OTL in Hong Kong were also used to validate the GPS results. The study shows that the results from both the GPS and gravity measurements agree best with the GOT4.7 and NAO99b models, when the K1 and K2 constituents are excluded. The agreements between the GPS and the model estimates are generally at sub-millimeter level in both the horizontal and vertical directions, except for S2, K2 and K1 constituents that have relatively larger errors. After removing the systematic biases between the GPS and the model estimates, the misfits of M2, S2, N2, O1, P1 and Q1 at all sites are within 0.5 and 1.0 mm in the horizontal and the vertical directions, respectively, whereas K1 and K2 show relatively larger misfits of up to 2.3 mm. Both the GPS and the gravity S2 estimates have large biases with unknown reasons when compared with the modeled values, which needs to be further investigated. The study demonstrates that GPS is capable of estimating the OTL displacements with the same accuracy as the model predictions, especially for coastal areas.
文摘The response of radial inhomogeneous elastic earth under the action of oceanic tides is studied by use of the combination of convolution integral with spherical harmonic expansion. In the meantime, the effect of oceanic tides on gravity, tilt and strain in the mainland of China is estimated, and the accuracy of loading correction is also briefly analysed. Results show that the loading effect along the coast of China cannot be neglected, for gravity it is about 5% of body tides, for tilt it reaches the same magnitude as body tides, for strain about 50%. The result obtained can be used to provide the tidal correction for various precision geodesy. The proposal method may also be applied to the effect of other surface loading except oceanic tides.
基金The paper is funded by the 7.5 Key ScienceTechnology Project(87-02-07)of the National Mapping Bureau
文摘Using tidal potential solar thermal-radiating energy current and the nonlinear effect of the gravity tide as the input function, moreover, considering the ocean tidal species as the input function of the loading effect of ocean tide, we make the lumped response analysis of the observational tilt tide in one year. The tilt gravitational tide, the load tide, the radiational tide and the nonlinear tide with the same frequeny are separated off. It is shown that the load tide and the gravitational tide are the same quantity grade, the load tide may spread into inland far away; the solar thermal-radiation has an effect on the tilt tide; there is a little nonlinear tide in the tilt tide, but the nonlinear tide of the ocean tide has the stronger loading effect on the tilt tide than the nonlinear tide brought about by the gravitational tide itself; the lag interval, △τ=41 (h), is the best value in the response analysis. In addition, the harmonic analyses of the tilt tide and the separated tilt tides are made respectively by using j.v model, and their ellipse factors are calculated.