期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas 被引量:5
1
作者 WANG Guansuo ZHAO Chang +2 位作者 XU Jiangling QIAO Fangli XIA Changshui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期19-28,共10页
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin... An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean. 展开更多
关键词 operational forecast sea surface temperature mixed layer depth lead time subsurface temperature ocean circulation-surface wave coupled forecast system China's seas
下载PDF
A Spatiotemporal Interactive Processing Bias Correction Method for Operational Ocean Wave Forecasts
2
作者 AI Bo YU Mengchao +5 位作者 GUO Jingtian ZHANG Wei JIANG Tao LIU Aichao WEN Lianjie LI Wenbo 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第2期277-290,共14页
Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictio... Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictions of numerical models and the actual sea state has been observed,predictions can only be released after correction by forecasters.This paper proposes a spati-otemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products.The proposed method combines the advantages of numerical models and Forecast Discussion;specifically,it integrates subjective and objective information to achieve interactive spatiotemporal correc-tions for numerical prediction.The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judg-ment of forecasters to achieve numerical prediction accuracy.The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis,thereby achieving highly efficient correction for multi-time forecasting fields.In this paper,the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis.Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states.The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently. 展开更多
关键词 numerical models ocean wave forecasts spatial interpolation time series interpolation successive correction
下载PDF
Improving global weather and ocean wave forecast with large artificial intelligence models
3
作者 Fenghua LING Lin OUYANG +4 位作者 Boufeniza Redouane LARBI Jing-Jia LUO Tao HAN Xiaohui ZHONG Lei BAI 《Science China Earth Sciences》 SCIE EI CAS 2024年第12期3641-3654,共14页
The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a s... The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a significant breakthrough,overcoming the limitations of traditional numerical weather prediction models and indicating the emergence of profound potential tools for atmosphere-ocean forecasts.This study explores the evolution of these advanced artificial intelligence forecast models,and based on the identified commonalities,proposes the“Three Large Rules”for large weather forecast models:a large number of parameters,a large number of predictands,and large potential applications.We discuss the capacity of artificial intelligence to revolutionize numerical weather prediction,briefly outlining the underlying reasons for the significant improvement in weather forecasting.While acknowledging the high accuracy,computational efficiency,and ease of deployment of large artificial intelligence forecast models,we also emphasize the irreplaceable values of traditional numerical forecasts and explore the challenges in the future development of large-scale artificial intelligence atmosphere-ocean forecast models.We believe that the optimal future of atmosphere-ocean weather forecast lies in achieving a seamless integration of artificial intelligence and traditional numerical models.Such a synthesis is anticipated to offer a more advanced and reliable approach for improved atmosphere-ocean forecasts.Finally,we illustrate how forecasters can leverage the large weather forecast models through an example by building an artificial intelligence model for global ocean wave forecast. 展开更多
关键词 Numerical weather prediction Deep learning Large AI weather forecast models Global ocean wave forecast
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部