A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed...A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.展开更多
El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive an...El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.展开更多
A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equ...A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.展开更多
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulat...This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.展开更多
Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectiv...Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectively(called TP FORC and NTP FORC hereinafter). Comparison shows that,to some extent,the existence of the Tibetan Plateau orography weakens or restrains(strengthens or facilitates)the formation of the anomalous circulation of Asian monsoon during El Nino(La Nina)period.Opposite results are found in the uncoupled AGCM simulation.展开更多
In this paper, ocean-atmosphere coupled regimes are identified on the basis of SVD analysis, cluster analysis and composite analysis. The coupled regimes in cold seasons are identified as the clusters of the ocean-atm...In this paper, ocean-atmosphere coupled regimes are identified on the basis of SVD analysis, cluster analysis and composite analysis. The coupled regimes in cold seasons are identified as the clusters of the ocean-atmosphere coupled states in a low dimensional phase space spanned by the first four SVD modes. Three coupled regimes are found. The first two coupled regimes reflect the ENSO episodes and the accompanying PNA patterns. The third regime, i.e., EAWM regime, is characterized by the strong EAWM activity and the specific SST anomaly. The composite analysis gives further evidences to the identification of EAWM regime and also demonstrates the dynamical process of its formation. The anomaly pattern of the tropical Pacific SSTA in the strong EAWM year differs significantly from that of the La Nina year.展开更多
A large number of papers have been published and great efforts have been made in the recent 20 years by the Chinese oceanographic and meteorological scientists in the ocean-atmosphere interaction studies. The present ...A large number of papers have been published and great efforts have been made in the recent 20 years by the Chinese oceanographic and meteorological scientists in the ocean-atmosphere interaction studies. The present paper is an overview of the major achievements made by Chinese scientists aad their collaborators in studies of larger scale ocean-atmosphere interaction in the following oceans: the South China Sea, the Tropical Pacific, the indian Ocean and the North Pacific. Many interesting phenomena and dynamic mechanisms have been discovered and studied in these papers. These achievements have improved our understanding of climate variability and have great implications in climate prediction, and thus are highly relevant to the ongoing international Climate Variability and Predictability (CLIVAR) efforts.展开更多
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with t...In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that bythe corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 yearintegrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAPAGCM, i.e., no serious 'climate drift' occurs in the CGCM simulation. A comparison of the results from AGCM andCGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM ismuch greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and NorthAtlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not existin the AGCM simulation.The interannual variability of climate may be classified into two typest one is the variation of the annual mean,another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type ofvariability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannualvariability are found to have different spatial and temporal characteristics.展开更多
With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the predi...With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 E1 Nino 6 to 8 months ahead, further analysis shows that on the antecedent and onset stages of the 1997/1998 E1 Nino event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.展开更多
This study revises Weare's latent heat parameterization scheme and conducts an associated theoretic analysis. The revised Weare's scheme is found to present potentially better results than Zebiak's scheme. The Zebi...This study revises Weare's latent heat parameterization scheme and conducts an associated theoretic analysis. The revised Weare's scheme is found to present potentially better results than Zebiak's scheme. The Zebiak-Cane coupled ocean-atmosphere model, initialized by the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis of wind stress anomaly at 925 hPa, is referred to as the ZCW coupled model. The atmosphere models of the ZCW coupled model that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCW0 and ZCWN atmosphere models, respectively. The coupled ocean-atmosphere models that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCWoand ZCWN coupled models, respectively. The simulations between the ZCW0 and ZCWN atmosphere models and between the ZCW0 and ZCWN coupled models are analyzed. The results include: (1) The evolution of heat, meridional wind and divergence anomalies simulated by similar ZCW0 and ZCWN atmosphere models, although the magnitudes of the former are larger than those of the latter; (2) The prediction skill of the Nino3 index from 1982 to 1999 by the ZCWN coupled model shows improvement compared with those by the ZCW0 coupled model; (3) The analysis of E1 Nino events in 1982/1983, 1986/1987, and 1997/1998 and La Nifia events in 1984/1985, 1988/1989, and 1998/2000 suggests that the ZCWN coupled model is better than the ZCW0 coupled model in predicting warm event evolution and cold event generation. The results also show the disadvantage of the ZCWN coupled model for predicting E1 Nino.展开更多
A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atm...A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.展开更多
A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to...A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to 1994 are performed. Analyses indicate that: (1) The overall predictive capability of this model for SSTA over the central-eastern tropical Pacific can reach one year, and the error is not larger than 0.8 degrees C. (2) The prediction skill depends greatly on the season when forecasts start. However, the phenomenon of SPB (spring prediction barrier) is not found in the model. (3) The ensemble forecast method can effectively improve prediction results. A new initialization scheme is discussed.展开更多
The North American Dipole(NAD)is a north-south seesaw pattern of sea level pressure anomalies over the western tropical North Atlantic and northeastern North America.Previous observational studies have demonstrated th...The North American Dipole(NAD)is a north-south seesaw pattern of sea level pressure anomalies over the western tropical North Atlantic and northeastern North America.Previous observational studies have demonstrated that the NAD can affect the outbreak of El Niño-Southern Oscillation(ENSO)events.The present study analyzed the NAD-ENSO relationship as simulated by a coupled ocean-atmosphere model-namely,the Flexible Global Ocean-Atmosphere-Land System model,gridpoint version 2(FGOALS-g2).Results indicated that the model can replicate a distinct dipole comprised of a low over northeastern North America and a high over the western tropical North Atlantic,which is the signature feature of the NAD.Further analysis verified that the winter NAD can initiate the central equatorial Pacific warming in the subsequent winter by effectively forcing an anticyclonic flow and sea surface temperature(SST)warming over the northeastern subtropical Pacific(NESP)during late winter or early spring.In addition,the probability of an El Niño event was increased by a factor of 1.8 in the assimilation experiment with the NAD.By comparison,the winter Northern Atlantic Oscillation had no significant impact on the occurrence of ENSO a year later owing to its failure to induce the SST and surface wind anomalies over the NESP.展开更多
An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmo...An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmosphere coupling assumption in hydrodynamic ENSO models. It is revealed that there is a kind of abrupt nonlinear characteristic behaviour, which relates to rapid onset and intermittency of El Nino events, on the second order slow time scale due to the nonlinear interaction between a linear unstable low-frequency primary eigen component of ocean-atmosphere coupled Kelvin wave and its higher order harmonic components under a strong ocean-atmosphere coupling background. And, on the other hand, there is a kind of finite amplitude nonlinear characteristic behaviour on the second order slow time scale due to the nonlinear interaction between the linear unstable primary eigen component and its higher order harmonic components under a weak ocean-atmosphere coupling background in this model system.展开更多
The quasi-geostrophic atmospheric and oceanic equations of momentum and thermodynamics with dissipation factors are used to create a simple coupled ocean-atmosphere model describing the large-scale shallow-water motio...The quasi-geostrophic atmospheric and oceanic equations of momentum and thermodynamics with dissipation factors are used to create a simple coupled ocean-atmosphere model describing the large-scale shallow-water motion. We discuss the ocean-atmosphere coupling effect in mid-high and low latitudes separately and analyze characteristics of which the oscillatory periods of coupled low-frequency modes (ocean mode) vary with the coupling frequency and latitudinal number. This can interpret the correlation between low-frequency oscillation and ocean-atmosphere interaction. Then from the dispersion curves of atmosphere and ocean, we reveal effect of the coupling strength on the propagation of Rossby waves. The convection mechanism between the two modes is also discussed in view of the slowly varying wave train.The results show that Newtonian cooling and Rayleigh friction play a stable rule in oceanic Rossby waves, the period of coupled low-frequency mode grows with the increment of the coupling frequency. The larger the latitudinal number is, the more rapidly it grows. When the coupling frequency tends to critical value, the oceanic Rossby waves become static. When the ocean-atmosphere coupling strength grows to some degree, the propagation of oceanic Rossby waves will become opposite to its original direction. One part of the oceanic Rossby waves is converted into atmospheric Rossby waves, the energy conversion coefficient is also solved out.展开更多
To estimate the time delay between the planetary temperature change and the change of the incoming solar radiation fraction absorbed by the ocean and the atmosphere, the analytical energy balance model is presented. T...To estimate the time delay between the planetary temperature change and the change of the incoming solar radiation fraction absorbed by the ocean and the atmosphere, the analytical energy balance model is presented. The model generalization allows of using averaged data for model parameterization. Using the model, the time delay is investigated on four model cases of absorbed radiation change. The interconnections among the time delay, the planetary thermal inertia and the ocean active layer depth are established.展开更多
Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situ...Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.展开更多
ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provi...ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provides historical accounts of major milestones and synthesizes recent advances in the endeavor to understand summer variability over the Indo-Northwest Pacific region. Specifically, a large-scale anomalous anticyclone (AAC) is a recurrent pattern in post-E1 Nifio summers, spanning the tropical Northwest Pacific and North Indian oceans. Regarding the ocean memory that anchors the summer AAC, competing hypotheses emphasize either SST cooling in the easterly trade wind regime of the Northwest Pacific or SST warming in the westerly monsoon regime of the North Indian Ocean. Our synthesis reveals a coupled ocean- atmosphere mode that builds on both mechanisms in a two-stage evolution. In spring, when the northeast trades prevail, the AAC and Northwest Pacific cooling are coupled via wind-evaporation-SST feedback. The Northwest Pacific cooling persists to trigger a summer feedback that arises from the interaction of the AAC and North Indian Ocean warming, enabled by the westerly monsoon wind regime. This Indo-western Pacific ocean capacitor (IPOC) effect explains why E1 Nifio stages its last act over the monsoonal Indo-Northwest Pacific and casts the Indian Ocean warming and AAC in leading roles. The IPOC displays interdecadal modulations by the ENSO variance cycle, significantly correlated with ENSO at the turn of the 20th century and after the 1970s, but not in between. Outstanding issues, including future climate projections, are also discussed.展开更多
A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. Th...A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 40523001, 40221503, 40675050)Major State Basic Research Development Program of China under Grant Nos. 2005CB321703, 2006CB403603the International Partnership Creative Group entitled "The Climate System Model Development and Application Studies".
文摘A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.
基金the National Key Research and Development Program of China (Nos.2017YFC1404102,2017YFC1404100)the Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDB 40000000,XDB 42000000)+4 种基金the National Natural Science Foundation of China (Nos.41690122(41690120),41705082,41421005)the Shandong Taishan Scholarship,the China Postdoctoral Science Foundation (Nos.2018M640659,2019M662453)YU Yongqiang is jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDA 19060102.XDB 42000000)REN Hong-Li is jointly supported by the China National Science Foundation (No.41975094)the China National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster (No.2018YFC1506004)
文摘El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.
基金the National Natural Science Foundation of Chinathe Yellow River Water Conservancy Commission (Grant Nos. 50239080 and 40271019)
文摘A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.
基金the National Natural Science Foundation of China under Grant Nos.40221503,40231004, 40233031.
文摘This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.
文摘Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectively(called TP FORC and NTP FORC hereinafter). Comparison shows that,to some extent,the existence of the Tibetan Plateau orography weakens or restrains(strengthens or facilitates)the formation of the anomalous circulation of Asian monsoon during El Nino(La Nina)period.Opposite results are found in the uncoupled AGCM simulation.
文摘In this paper, ocean-atmosphere coupled regimes are identified on the basis of SVD analysis, cluster analysis and composite analysis. The coupled regimes in cold seasons are identified as the clusters of the ocean-atmosphere coupled states in a low dimensional phase space spanned by the first four SVD modes. Three coupled regimes are found. The first two coupled regimes reflect the ENSO episodes and the accompanying PNA patterns. The third regime, i.e., EAWM regime, is characterized by the strong EAWM activity and the specific SST anomaly. The composite analysis gives further evidences to the identification of EAWM regime and also demonstrates the dynamical process of its formation. The anomaly pattern of the tropical Pacific SSTA in the strong EAWM year differs significantly from that of the La Nina year.
基金the Natioual Natural Science Foundation of China Grant No. 40333030 , 40233033.
文摘A large number of papers have been published and great efforts have been made in the recent 20 years by the Chinese oceanographic and meteorological scientists in the ocean-atmosphere interaction studies. The present paper is an overview of the major achievements made by Chinese scientists aad their collaborators in studies of larger scale ocean-atmosphere interaction in the following oceans: the South China Sea, the Tropical Pacific, the indian Ocean and the North Pacific. Many interesting phenomena and dynamic mechanisms have been discovered and studied in these papers. These achievements have improved our understanding of climate variability and have great implications in climate prediction, and thus are highly relevant to the ongoing international Climate Variability and Predictability (CLIVAR) efforts.
文摘In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that bythe corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 yearintegrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAPAGCM, i.e., no serious 'climate drift' occurs in the CGCM simulation. A comparison of the results from AGCM andCGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM ismuch greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and NorthAtlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not existin the AGCM simulation.The interannual variability of climate may be classified into two typest one is the variation of the annual mean,another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type ofvariability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannualvariability are found to have different spatial and temporal characteristics.
基金Natural Science Foundation of China (40275016)Science and Technology DevelopmentProject for the Shanghai Meteorological Bureau (0301)
文摘With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 E1 Nino 6 to 8 months ahead, further analysis shows that on the antecedent and onset stages of the 1997/1998 E1 Nino event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.
基金National Natural Science Foundation of China (40875025, 40875030, 40775033)Shanghai Natural Science Foundation of China (08ZR1422900)Key Promotion Project of New Meteorology Technology of the China Meteorological Administration in 2009 (09A13)
文摘This study revises Weare's latent heat parameterization scheme and conducts an associated theoretic analysis. The revised Weare's scheme is found to present potentially better results than Zebiak's scheme. The Zebiak-Cane coupled ocean-atmosphere model, initialized by the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis of wind stress anomaly at 925 hPa, is referred to as the ZCW coupled model. The atmosphere models of the ZCW coupled model that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCW0 and ZCWN atmosphere models, respectively. The coupled ocean-atmosphere models that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCWoand ZCWN coupled models, respectively. The simulations between the ZCW0 and ZCWN atmosphere models and between the ZCW0 and ZCWN coupled models are analyzed. The results include: (1) The evolution of heat, meridional wind and divergence anomalies simulated by similar ZCW0 and ZCWN atmosphere models, although the magnitudes of the former are larger than those of the latter; (2) The prediction skill of the Nino3 index from 1982 to 1999 by the ZCWN coupled model shows improvement compared with those by the ZCW0 coupled model; (3) The analysis of E1 Nino events in 1982/1983, 1986/1987, and 1997/1998 and La Nifia events in 1984/1985, 1988/1989, and 1998/2000 suggests that the ZCWN coupled model is better than the ZCW0 coupled model in predicting warm event evolution and cold event generation. The results also show the disadvantage of the ZCWN coupled model for predicting E1 Nino.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90411010, 40506007)the key project of International Science and Technology Cooperation program of China (2006DFB21250)the 111 project (B07036)
文摘A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.
文摘A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to 1994 are performed. Analyses indicate that: (1) The overall predictive capability of this model for SSTA over the central-eastern tropical Pacific can reach one year, and the error is not larger than 0.8 degrees C. (2) The prediction skill depends greatly on the season when forecasts start. However, the phenomenon of SPB (spring prediction barrier) is not found in the model. (3) The ensemble forecast method can effectively improve prediction results. A new initialization scheme is discussed.
基金jointly supported by the National Natural Science Foundation of China[grant number 41975070]the State Key Labo-ratory of Tropical Oceanography,South China Sea Institute of Oceanol-ogy,Chinese Academy of Sciences[project number LTO1901].
文摘The North American Dipole(NAD)is a north-south seesaw pattern of sea level pressure anomalies over the western tropical North Atlantic and northeastern North America.Previous observational studies have demonstrated that the NAD can affect the outbreak of El Niño-Southern Oscillation(ENSO)events.The present study analyzed the NAD-ENSO relationship as simulated by a coupled ocean-atmosphere model-namely,the Flexible Global Ocean-Atmosphere-Land System model,gridpoint version 2(FGOALS-g2).Results indicated that the model can replicate a distinct dipole comprised of a low over northeastern North America and a high over the western tropical North Atlantic,which is the signature feature of the NAD.Further analysis verified that the winter NAD can initiate the central equatorial Pacific warming in the subsequent winter by effectively forcing an anticyclonic flow and sea surface temperature(SST)warming over the northeastern subtropical Pacific(NESP)during late winter or early spring.In addition,the probability of an El Niño event was increased by a factor of 1.8 in the assimilation experiment with the NAD.By comparison,the winter Northern Atlantic Oscillation had no significant impact on the occurrence of ENSO a year later owing to its failure to induce the SST and surface wind anomalies over the NESP.
文摘An extended ocean-atmosphere coupled characteristic system including thermodynamic physical processes in ocean mixed layer is formulated in order to describe SST explicitly and remove possible limitation of ocean-atmosphere coupling assumption in hydrodynamic ENSO models. It is revealed that there is a kind of abrupt nonlinear characteristic behaviour, which relates to rapid onset and intermittency of El Nino events, on the second order slow time scale due to the nonlinear interaction between a linear unstable low-frequency primary eigen component of ocean-atmosphere coupled Kelvin wave and its higher order harmonic components under a strong ocean-atmosphere coupling background. And, on the other hand, there is a kind of finite amplitude nonlinear characteristic behaviour on the second order slow time scale due to the nonlinear interaction between the linear unstable primary eigen component and its higher order harmonic components under a weak ocean-atmosphere coupling background in this model system.
基金This work is supported by the Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Academia Sinica.
文摘The quasi-geostrophic atmospheric and oceanic equations of momentum and thermodynamics with dissipation factors are used to create a simple coupled ocean-atmosphere model describing the large-scale shallow-water motion. We discuss the ocean-atmosphere coupling effect in mid-high and low latitudes separately and analyze characteristics of which the oscillatory periods of coupled low-frequency modes (ocean mode) vary with the coupling frequency and latitudinal number. This can interpret the correlation between low-frequency oscillation and ocean-atmosphere interaction. Then from the dispersion curves of atmosphere and ocean, we reveal effect of the coupling strength on the propagation of Rossby waves. The convection mechanism between the two modes is also discussed in view of the slowly varying wave train.The results show that Newtonian cooling and Rayleigh friction play a stable rule in oceanic Rossby waves, the period of coupled low-frequency mode grows with the increment of the coupling frequency. The larger the latitudinal number is, the more rapidly it grows. When the coupling frequency tends to critical value, the oceanic Rossby waves become static. When the ocean-atmosphere coupling strength grows to some degree, the propagation of oceanic Rossby waves will become opposite to its original direction. One part of the oceanic Rossby waves is converted into atmospheric Rossby waves, the energy conversion coefficient is also solved out.
文摘To estimate the time delay between the planetary temperature change and the change of the incoming solar radiation fraction absorbed by the ocean and the atmosphere, the analytical energy balance model is presented. The model generalization allows of using averaged data for model parameterization. Using the model, the time delay is investigated on four model cases of absorbed radiation change. The interconnections among the time delay, the planetary thermal inertia and the ocean active layer depth are established.
基金supported by the National Basic Research Program of China (Grant Nos.2014CB953902,2011CB403505,and 2012CB417203)the Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA11010402 and XDA01020302)the National Natural Science Foundation of China (Grant Nos.41175059 and 41375087)
文摘Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.
基金supported by the National Basic Research Program of China (Grant No. 2012CB 955600)the U.S. National Science Foundation, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010103)+1 种基金the Environment Research and Technology Development Fund 2-1503 of the Japanese Ministry of Environment, the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research 25287120 and for Young Scientists 15H05466the National Natural Science Foundation of China (Grant Nos. 41205049, 41275081, 41425019, 41525019, 41521005)
文摘ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provides historical accounts of major milestones and synthesizes recent advances in the endeavor to understand summer variability over the Indo-Northwest Pacific region. Specifically, a large-scale anomalous anticyclone (AAC) is a recurrent pattern in post-E1 Nifio summers, spanning the tropical Northwest Pacific and North Indian oceans. Regarding the ocean memory that anchors the summer AAC, competing hypotheses emphasize either SST cooling in the easterly trade wind regime of the Northwest Pacific or SST warming in the westerly monsoon regime of the North Indian Ocean. Our synthesis reveals a coupled ocean- atmosphere mode that builds on both mechanisms in a two-stage evolution. In spring, when the northeast trades prevail, the AAC and Northwest Pacific cooling are coupled via wind-evaporation-SST feedback. The Northwest Pacific cooling persists to trigger a summer feedback that arises from the interaction of the AAC and North Indian Ocean warming, enabled by the westerly monsoon wind regime. This Indo-western Pacific ocean capacitor (IPOC) effect explains why E1 Nifio stages its last act over the monsoonal Indo-Northwest Pacific and casts the Indian Ocean warming and AAC in leading roles. The IPOC displays interdecadal modulations by the ENSO variance cycle, significantly correlated with ENSO at the turn of the 20th century and after the 1970s, but not in between. Outstanding issues, including future climate projections, are also discussed.
基金Acknowledgements. This work was jointly supported by the Chinese Academy of Sciences through the International Partnership Creative Group entitled "The Climate System Model Development and Application Studies", the Major State Basic Research Development Program of China (973 Program) under Grant No. 2005CB321703, and the National Natural Science Foundation of China (Grant Nos. 40675050, 40221503, 40625014). The long-term integration of the coupled model was finished on the Lenovo DeepComp 6800 supercomputer at the Supercomputing Center of the Chinese Academy of Sciences, and the IBM SP690 at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The authors appreciate the contribution of Drs. R. C. Yu, Y. Q. Yu, H. L. Liu, W. P. Zheng, J. Li, X. G Xin, and Mrs. H. Wan, H. M. Li in the model development and validations.
文摘A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.