期刊文献+
共找到11,291篇文章
< 1 2 250 >
每页显示 20 50 100
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:1
1
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation Three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
下载PDF
Theoretical Modeling and Surface Roughness Prediction of Microtextured Surfaces in Ultrasonic Vibration-Assisted Milling
2
作者 Chenbing Ni Junjie Zhu +3 位作者 Youqiang Wang Dejian Liu Xuezhao Wang Lida Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期163-183,共21页
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te... Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM. 展开更多
关键词 Theoretical modeling Microtextured surface Ultrasonic vibration-assisted milling Cubic spline interpolation surface roughness
下载PDF
Seasonal constraint of dynamic water temperature on riverine dissolved inorganic nitrogen transport in land surface modeling
3
作者 Shuang Liu Kaiheng Hu +1 位作者 Zhenghui Xie Yan Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期35-40,共6页
水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变... 水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变化对河流DIN通量变化的影响.结果表明:在考虑水温动态变化后,在30°N和30°S之间, DIN通量年振幅减小5%–25%.在中国东部地区,水温动态变化使河流DIN通量在夏季减少1%–3%,在冬季增加1%–5%,对DIN通量具有明显的季节性约束作用,表明动态水温的表达在河流DIN输送模拟中的重要性. 展开更多
关键词 陆面模拟 河流氮输送 水温变化 季节变化 全球尺度
下载PDF
Relationships between Terrain Features and Forecasting Errors of Surface Wind Speeds in a Mesoscale Numerical Weather Prediction Model
4
作者 Wenbo XUE Hui YU +1 位作者 Shengming TANG Wei HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1161-1170,共10页
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM... Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study. 展开更多
关键词 surface wind speed terrain features error analysis MOS calibration model
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
5
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test surface 3D deformation Stability identification
下载PDF
Hardening mechanism and thermal-solid coupling model of laminar plasma surface hardening of 65 Mn steel
6
作者 Xiuquan CAO Lin WANG +2 位作者 Haoming XU Guangzhong HU Chao LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期110-120,共11页
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h... In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel. 展开更多
关键词 65 Mn steel laminar plasma surface hardening hardening mechanism microstructure characteristics thermal-solid coupling model
下载PDF
A CFD Model to Evaluate Near-Surface Oil Spill from a Broken Loading Pipe in Shallow Coastal Waters
7
作者 Portia Felix Lee Leon +2 位作者 Derek Gay Stefano Salon Hazi Azamathulla 《Fluid Dynamics & Materials Processing》 EI 2024年第1期59-77,共19页
Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I... Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot. 展开更多
关键词 CFD model Navier-Stokes equations projection method water surface oil spill shallow coastal waters
下载PDF
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
8
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection Deeplabv3+ deep learning model
下载PDF
Comparative Analysis of Statistical Thickness Models for the Determination of the External Specific Surface and the Surface of the Micropores of Materials: The Case of a Clay Concrete Stabilized Using Sugar Cane Molasses
9
作者 Nice Mfoutou Ngouallat Narcisse Malanda +3 位作者 Christ Ariel Ceti Malanda Kris Berjovie Maniongui Erman Eloge Nzaba Madila Paul Louzolo-Kimbembe 《Geomaterials》 2024年第2期13-28,共16页
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and... In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research. 展开更多
关键词 Statistical Thickness model External Specific surface Microporous surface Clay Concrete MOLASSES
下载PDF
Analytical Modeling and Mechanism Analysis of Time-Varying Excitation for Surface Defects in Rolling Element Bearings 被引量:1
10
作者 Laihao Yang Yu Sun +2 位作者 Ruobin Sun Lixia Gao Xuefeng Chen 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期89-101,共13页
Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechani... Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis. 展开更多
关键词 analytical model rolling bearings surface defects time-varying excitation vibration mechanism
下载PDF
Variable-coordinate forward modeling of irregular surface based on dual-variable grid 被引量:5
11
作者 黄建平 曲英铭 +3 位作者 李庆洋 李振春 李国磊 步长城 《Applied Geophysics》 SCIE CSCD 2015年第1期101-110,123,共11页
The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the... The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid. 展开更多
关键词 MAPPING irregular surface BOUNDARY GRID forward modeling
下载PDF
Modeling of surface flux in Tongyu using the Simple Biosphere Model 2 (SiB2) 被引量:4
12
作者 延晓冬 李慧阳 +2 位作者 刘飞 高志球 刘辉志 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期183-188,I0005,共7页
The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu ... The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu field observation station(44°25'N,122°52'E,184 m elevation) of Coordinated Enhanced Observing Period(CEOP),where the land cover is cropland and grassland.In the whole year of 2003,the canopy height and the leaf area index was variable.During non-growth period,the surface would become bare,while during the growth period,the canopy height could reach 2.0 m high over cropland and 0.8 m high over grassland,respectively,and max leaf area index could reach 4.2 and 2.4,respectively.The model was initialized with measurement and driven by half-hourly atmospheric observations.The simulation values for 2003 were compared against measurements.Results show that the model is of a good ability of simulating the hourly latent heat(LE),sensible heat(H),CO2 flux and temperature during the growth period.Moreover,the daily LE,H and CO2 flux simulated by SiB2 could reflect their yearly change reasonably.However,the model may overestimate the H generally. 展开更多
关键词 CROPLAND GRASSLAND Simple Biosphere model 2(SiB2) surface flux
下载PDF
Analysis of the interaction between bolt-reinforced rock and surface support in tunnels based on convergence-confinement method 被引量:2
13
作者 Zhenyu Sun Dingli Zhang +2 位作者 Qian Fang Yanjuan Hou Nanqi Huangfu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1936-1951,共16页
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb... To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design. 展开更多
关键词 Analytical model Longitudinal tunnel displacement Fictitious pressure Active rockbolts surface support reaction pressure Tunnel design
下载PDF
Variation in the surface heat flux on the north and south slopes of Mount Qomolangma 被引量:1
14
作者 Yonghao Jiang Maoshan Li +4 位作者 Yuchen Liu Ting Wang Pei Xu Yaoming Ma Fanglin Sun 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期28-33,共6页
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t... The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope. 展开更多
关键词 Mount Qomolangma TESEBS model Remote sensing retrieval surface heat fluxes
下载PDF
Seismic wavefield modeling in media with fluid-filled fractures and surface topography 被引量:2
15
作者 兰海强 张中杰 《Applied Geophysics》 SCIE CSCD 2012年第3期301-312,361,共13页
We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in ... We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures. 展开更多
关键词 finite difference modeling FRACTURE irregular free surface curvilinear coordinate
下载PDF
Spatial Variation in CO_(2) Concentration Improves the Simulated Surface Air Temperature Increase in the Northern Hemisphere
16
作者 Jing PENG Li DAN Xiba TANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1614-1628,1676-1685,共25页
The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air... The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air temperature biases remains highly unclear.By incorporating the spatial distribution of satellite-derived atmospheric CO_(2) concentration in the Beijing Normal University Earth System Model,this study investigated the increase in surface air temperature since the Industrial Revolution in the Northern Hemisphere(NH) under historical conditions from 1976-2005.In comparison with the increase in surface temperature simulated using a uniform distribution of CO_(2),simulation with a nonuniform distribution of CO_(2)produced better agreement with the Climatic Research Unit(CRU) data in the NH under the historical condition relative to the baseline over the period 1901-30.Hemispheric June-July-August(JJA) surface air temperature increased by 1.28℃ ±0.29℃ in simulations with a uniform distribution of CO_(2),by 1.00℃±0.24℃ in simulations with a non-uniform distribution of CO_(2),and by 0.24℃ in the CRU data.The decrease in downward shortwave radiation in the non-uniform CO_(2) simulation was primarily attributable to reduced warming in Eurasia,combined with feedbacks resulting from increased leaf area index(LAI) and latent heat fluxes.These effects were more pronounced in the non-uniform CO_(2)simulation compared to the uniform CO_(2) simulation.Results indicate that consideration of the spatial distribution of CO_(2)concentration can reduce the overestimated increase in surface air temperature simulated by Earth system models. 展开更多
关键词 spatial variations of CO_(2) surface air temperature Earth system model land surface albedo leaf area index
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
17
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Fiber Bundle Topology Optimization for Surface Flows
18
作者 Yongbo Deng Weihong Zhang +2 位作者 Jihong Zhu Yingjie Xu Jan G Korvink 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期236-264,共29页
This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ... This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective. 展开更多
关键词 Fiber bundle Topology optimization 2-MANIFOLD surface flow Material distribution method Porous medium model
下载PDF
Estimation of surface geometry on combustion characteristics of AP/HTPB propellant under rapid depressurization
19
作者 Kaixuan Chen Zhenwei Ye +1 位作者 Xiaochun Xue Yonggang Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期546-558,共13页
The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressu... The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most. 展开更多
关键词 AP/HTPB propellant BDP model Rapid pressure decay Burning surface geometry
下载PDF
Numerical simulations of Atlantic meridional overturning circulation(AMOC)from OMIP experiments and its sensitivity to surface forcing
20
作者 Xiaowei WANG Yongqiang YU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期454-467,共14页
Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Tw... Atlantic meridional overturning circulation(AMOC)plays an important role in transporting heat meridionally in the Earth’s climate system and is also a key metrical tool to verify oceanic general circulation models.Two OMIP(Ocean Model Intercomparison Project phase 1 and 2)simulations with LICOM3(version 3 of the LASG/IAP Climate System Ocean Model)developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics(IAP),are compared in this study.Both simulations well reproduce the fundamental characteristics of the AMOC,but the OMIP1 simulation shows a significantly stronger AMOC than the OMIP2 simulation.Because the LICOM3 configurations are identical between these two experiments,any differences between them must be attributed to the surface forcing data.Further analysis suggests that sea surface salinity(SSS)differences should be mainly responsible for the enhanced AMOC in the OMIP1 simulation,but sea surface temperature(SST)also play an unignorable role in modulating AMOC.In the North Atlantic,where deep convection occurs,the SSS in OMIP1 is more saline than that in OMIP1.We find that in the major region of deep convection,the change of SSS has more significant effect on density than the change of SST.As a result,the SSS was more saline than that in OMIP2,leading to stronger deep convection and subsequently intensify the AMOC.We conduct a series of numerical experiments with LICOM3,and the results confirmed that the changes in SSS have more significant effect on the strength of AMOC than the changes in SST. 展开更多
关键词 oceanic general circulation model(OGCM) Atlantic meridional overturning(AMOC) surface forcing deep convection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部