期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Early Paleozoic Ocean Plate Stratigraphy of the Beishan Orogenic Zone, NW China: Implications for Regional Tectonic Evolution 被引量:6
1
作者 WANG Jiaxuan ZHANG Kexin +5 位作者 JIN Jisuo SONG Bowen YU Yang WANG Lijun WANG Shengdong SUN Shuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期1042-1059,共18页
The Beishan orogenic zone is a key area to understand evolution of the Central Asian Orogenic Belt that is an accretionary factory well-enough preserved in the Paleozoic. In early Paleozoic, the tectonic mélange ... The Beishan orogenic zone is a key area to understand evolution of the Central Asian Orogenic Belt that is an accretionary factory well-enough preserved in the Paleozoic. In early Paleozoic, the tectonic mélange zone containing the coherent unit and mélange unit is triggered by the complicated accretionary process of the Beishan area. The early Paleozoic tectonic evolution of the Beishan orogenic zone is investigated in this study using sedimentology and stratigraphic correlations of the lowe Paleozoic deposits. From the Cambrian to the middle Ordovician, this region was characterized by geographically extensive, flat-bedded siliceous mudstone, indicating the existence of a large ocean basin. The oceanic plate entered the convergence phase in terms of the Wilson Circle during the Middle Ordovician, when numerous magmatic arcs formed along two opposite sides of the ocean. The magmatic arcs became the widest during the Silurian, suggesting that the Hongliuhe-Niujuanzi-Xichangjing Ocean(HNX;a southern branch of the Paleo Asian Ocean) was reduced to a small residual ocean in the central Beishan region by that time, and probably lasted till the Carboniferous or later by newly published data. 展开更多
关键词 SEDIMENTOLOGY tectono-paleogeography Beishan orogenic zone ocean plate stratigraphy
下载PDF
Tectonic Evolution of Neotethys Ocean: Evidence of Ophiolites and Ocean Plate Stratigraphy from the Northern and Southern belts in the Western Yarlung Zangbo Suture Zone, Tibet
2
作者 LIU Fei YANG Jingsui +2 位作者 LIAN Dongyang NIU Xiaolu FENG Guangying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期30-30,共1页
The Yarlung Zangbo suture zone(YZSZ)separates Indian plate and its northern passive margin units to the south from Eurasian plate and its active continental margin units of Xigaze forearc basin and Gangdese batholith ... The Yarlung Zangbo suture zone(YZSZ)separates Indian plate and its northern passive margin units to the south from Eurasian plate and its active continental margin units of Xigaze forearc basin and Gangdese batholith to the north(Xu et al.,2015;Yang et al.,2015).The western YZSZ in southern Tibet is divided by the Zhongba terrane into the northern belt(NB)and southern belt(SB).Ophiolites in the NB are dismembered as ophiolitic mélanges.Peridotite,cumulated gabbro,ocean plate stratigraphy(OPS)of seamount remnants and pelagichemipelagic sequence as blocks in serpentinite matrix are mainly observed,from west to east,in Dajiweng,Baer,Kazhan,Cuobuzha,Zhalai,Gongzhu.Ophiolites in the SB are absent ophiolitic units of sheeted dikes and MORB-like pillow lavas,occur as much larger peridotite massifs(i.e.,Dongbo,400 km^2;Purang,650 km^2;Xiugugabu,700 km^2;Dangqiong,300 km^2)which are intruded by mafic dike swarms and overlain by volcanic sedimentary OPS(Liu et al.,2018).We propose that the SB mafic–ultramafic rocks and volcanic sedimentary OPS represent fragments of an early Cretaceous continental margin ophiolite whose magmatic evolution was influenced by 140–137 Ma plume magmatism(Liu et al.,2015;Zheng et al.,2019).Relics of Late Paleocene to very Early Eocene deep-marine basin were developed in Saga and Gyirong(Ding,2003;Li et al.,2018).In contract,the NB ophiolitic mélanges report a travel log of an oceanic plate ranging from Middle Triassic to Early Cretaceous. 展开更多
关键词 ophiolite ocean plate stratigraphy Yarlung Zangbo suture zone NEOTETHYS
下载PDF
The significance of cherts as markers of Ocean Plate Stratigraphy and paleoenvironmental conditions:New insights from the Neoproterozoic-Cambrian Blovice accretionary wedge,Bohemian Massif 被引量:1
3
作者 LukášAckerman Jirízák +5 位作者 Václav Kachlík Jan Pašava KarelZák Andreas Pack František Veselovsky Ladislav Strnad 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第1期162-180,共19页
The Ediacaran to early Cambrian Blovice accretionary complex,Bohemian Massif,hosts abundant chert bodies that formed on an oceanic plate and were involved in subduction beneath the northern margin of Gondwana.Field re... The Ediacaran to early Cambrian Blovice accretionary complex,Bohemian Massif,hosts abundant chert bodies that formed on an oceanic plate and were involved in subduction beneath the northern margin of Gondwana.Field relationships of cherts to their host,their microstructure and elemental as well as isotopic compositions revealed diverse processes of chert petrogenesis reflecting depositional environment and position on the oceanic plate.The deep-water cherts formed through a hydrothermal precipitation of silica-rich gels on outer trench swell of the subducted slab with none or only minor addition of terrigenous material.On the contrary,the shallow-water cherts formed in lagoons on seamount slopes,and at least some of them represent a product of hydrothermal replacement of former carbonate and/or evaporite precursors.For both chert types,the hydrothermal fluids were of low temperature and continuous pervasive hydrothermal alteration of oceanic crust,together with an elevated Si content in Neoproterozoic seawater,served as the major source of silica.On the other hand,minor carbon enrichment in chert is mostly linked to variable incorporation of organic matter that was deposited on the seafloor.Rare earth element(REE)systematics of the cherts indicate predominantly oxygenated environment for the shallow-water cherts whereas the deep-water cherts were deposited in diverse redox conditions,depending on their distance from hydrothermal vent.Using these data,we demonstrate that the cherts once formed a part of Ocean Plate Stratigraphy(OPS)now dismembered and mixed with terrigenous siliciclastic material to form OPS mélanges.Combining our data with those from the existing literature,we show that cherts can serve as significant markers of OPS since the Archean,recording a complex interplay between seafloor-related volcanic(production of MORB-and OIB-like magmas)and sedimentary processes,hydrothermal activity at mid-ocean ridges and seamount chains as well as at outer slopes of subducting slabs.However,the cherts also exhibit a secular change in composition and petrogenesis most profoundly affected by an overturn in seawater silica cycle across the Precambrian-Phanerozoic boundary. 展开更多
关键词 Chert Accretionary wedge EDIACARAN Triple oxygen isotopes Strontium isotopes Ocean plate stratigraphy
原文传递
Geological Evidence for the Operation of Plate Tectonics throughout the Archean:Records from Archean Paleo-Plate Boundaries 被引量:25
4
作者 Timothy M.Kusky Brian F.Windley Ali Polat 《Journal of Earth Science》 SCIE CAS CSCD 2018年第6期1291-1303,共13页
Plate tectonics describes the horizontal motion of rigid lithospheric plates away from midoceanic ridges and parallel to transforms, towards deep-sea trenches, where the oceanic lithosphere is subducted into the mantl... Plate tectonics describes the horizontal motion of rigid lithospheric plates away from midoceanic ridges and parallel to transforms, towards deep-sea trenches, where the oceanic lithosphere is subducted into the mantle. This process is the surface expression of modern-day heat loss from Earth. One of the biggest questions in Geosciences today is "when did plate tectonics begin on Earth" with a wide range of theories based on an equally diverse set of constraints from geology, geochemistry, numerical modeling, or pure speculation. In this contribution, we turn the coin over and ask "when was the last appearance in the geological record for which there is proof that plate tectonics did not operate on the planet as it does today". We apply the laws of uniformitarianism to the rock record to ask how far back in time is the geologic record consistent with presently-operating kinematics of plate motion, before which some other mechanisms of planetary heat loss may have been in operation. Some have suggested that evidence shows that there was no plate tectonics before 800 Ma ago, others sometime before 1.8–2.7 Ga, or before 2.7 Ga. Still others recognize evidence for plate tectonics as early as 3.0 Ga, 3.3–3.5 Ga, the age of the oldest rocks, or in the Hadean before 4.3 Ga. A key undiscussed question is: why is there such a diversity of opinion about the age at which plate tectonics can be shown to not have operated, and what criteria are the different research groups using to define plate tectonics, and to recognize evidence of plate tectonics in very old rocks? Here, we present and evaluate data from the rock record, constrained by relevant geochemical-isotopic data, and conclude that the evidence shows indubitably that plate tectonics has been operating at least since the formation of the oldest rocks, albeit with some differences in processes, compositions, and products in earlier times of higher heat generation and mantle temperature, weaker oceanic lithosphere, hotter subduction zones caused by more slab-melt generation, and under different biological and atmospheric conditions. 展开更多
关键词 ARCHEAN TECTONICS OPHIOLITE OPS(oceanic plate stratigraphy OROGENY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部