Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of conti...Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of continents may generate enormous force on continents. Continents are physically fixed on the top of the lithosphere that has been already broken into individual plates, this attachment enables the force to be laterally transferred to the lithospheric plates. In this study, we combine the force and the existing plate driving forces (i.e., ridge push, slab pull, collisional, and shearing) to account for plate motion. We show that the modelled movements for the South American, African, North American, Eurasian, Australian, Pacific plates are well agreement with the observed movements in both speed and azimuth, with a Root Mean Square Error (RMSE) of the modelled speed against the observed speed of 0.91, 3.76, 2.77, 2.31, 7.43, and 1.95 mm/yr, respectively.展开更多
The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters....The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.展开更多
To promote long-term studies on the distribution and diversity of marine zooplankton in Indian seas,a comprehensive review has been carried out based on the available literature.Zooplankton studies in Indian waters st...To promote long-term studies on the distribution and diversity of marine zooplankton in Indian seas,a comprehensive review has been carried out based on the available literature.Zooplankton studies in Indian waters started in the early 1900 s,and a plethora of literature has accumulated dealing with various aspects of zooplankton,especially from the Bay of Bengal,Arabian Sea and their associated estuaries and backwaters.From this review,a comprehensive description is offered on the species composition and distribution of zooplankton in the Indian Seas.Emphasis is given to reflect the existing knowledge on the variations in zooplankton species composition in the Bay of Bengal and Arabian Sea.Copepods emerge as the most dominant component in all of these marine waters,as is the case worldwide.Copepods are more diverse in the Bay of Bengal than in Arabian Sea.展开更多
The ecosystem-based management of nearshore waters requires integrated assessment of ocean health and scientific guidance on artificial regulations to promote sustainable development. Quantitative approaches were deve...The ecosystem-based management of nearshore waters requires integrated assessment of ocean health and scientific guidance on artificial regulations to promote sustainable development. Quantitative approaches were developed in this paper to assess present and near-term ocean health based on ecosystem services. Results of the case study in the Laizhou Bay of China showed that the index score of ocean health was 0.785 6 out of 1.0 at present and was expected to range from 0.555 1 to 0.804 1 in the near-term future depending on different intensities of artificial regulation of negative pressures. Specifically, the results of ocean health at present mainly indicated that cultural services and provisioning services performed essentially perfectly while supporting services and regulating services functioned less well. It can be concluded that this nearshore ecosystem would partially lose supporting and regulating services in the near-term future if the increasing pressures were not wellregulated but that all of these categories of ecosystem services could be slightly improved if the negative pressures were fully controlled. Additionally, it is recommended that publicity and education on ecosystem services especially on cultural services and regulating services should be further strengthened. The analytical process and resulting quantification provide flexible tools to guide future development of regulations so as to facilitate ecosystem-based management in the coastal zone.展开更多
Global Positioning System (GPS) has been widely used to estimate the total zenith tropo- spheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and at- mospheric research as a continuous ...Global Positioning System (GPS) has been widely used to estimate the total zenith tropo- spheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and at- mospheric research as a continuous and all-weather technique. However, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models of inland seas in Turkey. In this paper, GPS data from Jan. 1, 2010 to Dec. 31, 2011 are processed using GAMIT/GLOBK at four co-located GPS stations (ISTN, ERZR, SAMN, and IZMI) with Radiosonde from the Turkish Met-Office together with several nearby IGS stations. Four widely used ocean tide models are adopted to evaluate their effects on GPS-estimated PWV, such as IERS recommended FES2004, NAO99b, CSR4.0 and GOT00. Five different strategies are taken without ocean tide model and with four ocean tide models, respectively, which are used to evaluate ocean tide models effects on GPS-estimated PWV through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the pre- cipitable water vapour at stations near coasts. The ocean tide model FES2004 gave the best results when compared to Radiosonde with +2.12 mm in PWV at stations near coastline. While other ocean tides models agree each other at millimeter level in PWV. However, at inland GPS stations, ocean tide models have less effect on GPS-estimated PWV.展开更多
For the supply of fish and shellfish to consumers in fresh condition, clean handling after catch from the sea is essential. According to HACCP (Hazard Analysis and Critical Control Points), it is important to meet s...For the supply of fish and shellfish to consumers in fresh condition, clean handling after catch from the sea is essential. According to HACCP (Hazard Analysis and Critical Control Points), it is important to meet such requirement by keeping fish and shellfish under a certain low temperature and clean conditions after catching. The deep ocean water (DOW) characterized by low temperature and cleanliness has been chosen for fish and shellfish handlings, particularly for salmon, cod, and sea urchin in Town 'Rausu' in Hokkaido, Japan. DOW below 2.9℃ of an amount of nearly 5 000 m^3 is planned to be pumped up every day from a depth of about 350 m, and temporarily stored in a large simulated tank on land. DOW is then supplied to fish boats through hydrants distributed throughout the harbor and used for keeping salmon in clean and cold conditions. Ice made from DOW is also used for lowering temperature if necessary. DOW and ice made from DOW are also used during the transportation of fish and shellfish. The entire system is scheduled to be completed by the summer of 2005.展开更多
The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation (SODA) outputs in the period of 1950-2008. The subduction rate census for potential density classes sho...The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation (SODA) outputs in the period of 1950-2008. The subduction rate census for potential density classes showed a peak corresponding to Indian Ocean subtropical mode water (IOSTMW) in the southwestern part of the South Indian Ocean subtropical gyre. The deeper mixed layer depth, the sharper mixed-layer fronts and the associated relatively faster circulation in the present climatology resulted in a larger lateral induction, which primarily dominants the IOSTMW subduction rate, while with only minor contribution from vertical pumping. Without loss of generality, through careful analysis of the water characteristics in the layer of minimum vertical temperature gradient (LMVTG), the authors suggest that the IOSTMW was identified as a thermostad, with a lateral minimum of low potential vorticity (PV, less than 200× 10^-12 m^-1·s^-1) and a low dT/dz (less than 1.5℃/(100 m)). The IOSTMW within the South Indian Ocean subtropical gyre distributed in the region approximately from 25° to 50° E and from 30° to 39°S. Additionally, the average characteristics (temperature, salinity, potential density) of the mode water were estimated about (16.38 ± 0.29)℃, (35.46 ±0.04), (26.02 ±0.04) ae over the past 60 years.展开更多
The effects ofpH, dissolved ion content and relative water velocity on the release rate of an antifouling agent, cuprous oxide, from ships' hull paint have been investigated by rotating cylinder tests. Additionally, ...The effects ofpH, dissolved ion content and relative water velocity on the release rate of an antifouling agent, cuprous oxide, from ships' hull paint have been investigated by rotating cylinder tests. Additionally, test paint panels were attached to a vessel and recovered after a certain period of voyage for the validation of the laboratory tests. In the initial period, the release rates are influenced by pH, dissolved ion content and water velocity, but once after a certain period of test, those effects become less significant. These phenomena can be explained when the paint film is fresh, the rate is controlled by chemical reaction, the surface and/or diffusion layer in the water phase governs the rate. After the antifouling substance in the paint film leached out from the near-surface region, a diffused layer (leached layer), that has little antifouling agent remained, is formed at the surface of the coating, and the diffusion in that layer can be a rate-determining process. The development of the leached layer is affected by a balance between the leaching rate of the antifouling ingredient and paint resin determined by the chemical properties and speed of the water. Thus, the leaching rates of antifouling agents are affected by the history of the paint in the water.展开更多
A necessary big step up in the modern water wave theories and their widespread application in ocean engineering is how to obtain 6-wave resonance conditions and to prove it. In the light of the existing forms and char...A necessary big step up in the modern water wave theories and their widespread application in ocean engineering is how to obtain 6-wave resonance conditions and to prove it. In the light of the existing forms and characteristics of 3-wave, 4-wave and 5-wave resonance conditions, the 6-wave resonance conditions are proposed and proved for currently a maximum wave-wave resonance interactions of the ocean surface gravity waves in deep water, which will be indispensable to both the Kolmogorov spectrum of the corresponding universal wave turbulence and a synthetic 4-5-6-wave resonant model for the ocean surface gravity waves.展开更多
The spatio-temporal analysis of the performance of the March to May</span><span style="font-family:""> (MAM) <span>2020 rainfall and its societal implications to Northern Coastal Tanza...The spatio-temporal analysis of the performance of the March to May</span><span style="font-family:""> (MAM) <span>2020 rainfall and its societal implications to Northern Coastal Tanzania</span> (NCT) including Zanzibar was investigated. The uniqueness of the October to December, 2019 (OND) rainfall and the extension of the January to February, 2020 rainfall in Zanzibar which coincided with MAM 2020 rainfall was among the issues which prolonged MAM 2020 rainfall in NCT and Zanzibar. The National Center for Environmental Prediction (NCEP) in collaboration with National Center for Atmospheric Research (NCAR)</span><span style="font-family:"">.</span><span style="font-family:""> Reanalysis 1 datasets of <i>u</i> (zonal)</span><span style="font-family:""> </span><span style="font-family:"">and <i>v</i> (meridional)</span><span style="font-family:""> </span><span style="font-family:"">winds</span><span style="font-family:"">,</span><span style="font-family:""> sea surface temperatures anomalies, relative humidity, amount of precipitable water and ocean net flux were</span><span style="font-family:""><span style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-attachment:initial;background-origin:initial;background-clip:initial;"> </span></span><span style="background-color:;"></span><span style="font-family:""><span style="background:yellow;"></span><span>analyzed. Other datasets include the Tanzania Meteorological Authority (TMA) observed rainfall</span> records</span><span style="font-family:"">,</span><span style="font-family:""> maximum and minimum temperature</span><span style="font-family:"">s</span><span style="font-family:"">. Moreover, <span>TMA and Intergovernmental Climate Prediction and Analysis Cente</span>r (ICPAC)</span><span style="font-family:"">.</span><span style="font-family:""> MAM 2020 rainfall and temperature forecast reports were interpreted. Gridded and observed datasets were calculated into monthly and seasonal averages. As for observed data, long</span><span style="font-family:"">-</span><span style="font-family:"">term monthly and MAM percentage changes were calculated. Besides, </span><span style="font-family:"">the </span><span style="font-family:"">correlation between rainfall anomalies with an area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> for defined regions and stations in Zanzibar w</span><span style="font-family:"">as</span><span style="font-family:""> performed. Lastly, the calculated monthly and seasonal rainfall was compared to MAM periods of 2016, 2017, 2018 and 2019. Results revealed that consecutive five MAM seasonal rainfall was among the highest ones in records with that of 2020 being exceptional. These MAM seasons had percentage contribution ranged from 68% - 212%, 150% - 304%, 22% - 163% and 57% - 170% for stations in Zanzibar and 130% - 230%, 57% - 168% and 230% - 706% for NCT station, respectively. Compared to previous MAM seasons of 2016-2019, MAM 2020 rainfall season was spatially well distributed in our study area with rainfall rang</span><span style="font-family:"">ing</span><span style="font-family:""> from 1200 to 2100 mm and up to 900 in most Zanzibar and NCT stations. Indeed, the study revealed that the observed highest rainfall and flooding was enhanced by wet seasons of MAM 2019, OND 2019 and DFJ (2019-2020). Other dynamics which accelerated MAM 2020 rainfall were the higher SST<sub>A</sub> ranged f<span>rom 0.5<span style="white-space:nowrap;">°</span>C - 1.5<span style="white-space:nowrap;">°</span>C and 1.5<span style="white-space:nowrap;">°</span>C - 2.5<span style="white-space:nowrap;">°</span>C over Southwestern Indian Ocean </span>(SWIO) and coastal Tanzania</span><span style="font-family:""> and</span><span style="font-family:""> the increased trend of area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> on various SWIO blocks. </span><span style="font-family:"">Besides,</span><span style="font-family:""> parameters including Rhum, PWR and wind regimes were supporting the MAM 2020 rainfall. The socio-economic implications of these rains were strong and spatially well distributed in Zanzibar. For instance, a death toll of about 10 people, </span><span style="font-family:"">a </span><span style="font-family:"">great number of road culverts were washed away, </span><span style="font-family:"">and </span><span style="font-family:"">about 3600 houses </span><span style="font-family:"">were </span><span style="font-family:"">fallen or damaged, leading to </span><span style="font-family:"">a </span><span style="font-family:"">significant number of homeless people. As for NCT</span><span style="font-family:"">,</span><span style="font-family:""> the catastrophes include loss of lives</span><span style="font-family:"">,</span><span style="font-family:""> increased water levels over Lake <span>Victoria leading to flooded islands and re</span></span><span style="font-family:""> </span><span style="font-family:"">allocation of more than 1000 </span><span style="font-family:"">people. In Kenya</span><span style="font-family:"">,</span><span style="font-family:""> more than 116 people died and 40,000 people were displaced. Conclusively</span><span style="font-family:"">,</span><span style="font-family:""> the study has shown the unique<span>ness (<i>i</i>.<i>e</i>.</span></span><span style="font-family:"">,</span><span style="font-family:""> strength and societal implications) of MAM 2020 compared to </span><span style="font-family:"">other seasons;hence more studies on understanding the factors affecting extreme rainfall seasons in East Africa are required</span><span style="font-family:"">.展开更多
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types correspondi...On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.展开更多
As an important component of microzooplankton,ciliates play a key role in matter cycling and energy fow in marine planktonic ecosystems.Studies of planktonic ciliate have been extensive in the South China Sea(SCS)over...As an important component of microzooplankton,ciliates play a key role in matter cycling and energy fow in marine planktonic ecosystems.Studies of planktonic ciliate have been extensive in the South China Sea(SCS)over the last 20 years.Here,we summarize the recent progress on the diversity and distribution of this group in the SCS.This includes that in:(1)the waters covering the intertidal zone of the northern SCS,most studies have focused on taxonomy,with 71 species collected,identifed,and described(with~40%new species);(2)neritic waters distribution patterns have been examined at a regional scale,with ciliates displaying signifcant spatial variations and seasonal dynamics;(3)in oceanic waters,there has been a focus on ciliate distribution in north,centre,and south regions,where mesoscale physical processes play roles in controlling distributions,and noticeable vertical variations occur.More generally,some studies examine the infuences of environment variables on ciliates,and indicate that chlorophyll a concentration is commonly positively correlated with ciliates abundance.In addition,some signifcant fndings are summarized,the limitations of past studies are considered,and recommendations are made for future work on planktonic ciliates in SCS.展开更多
In this work,we apply an efficient analytical algorithm namely homotopy perturbation Sumudu transform method(HPSTM)to find the exact and approximate solutions of linear and nonlinear time-fractional regularized long w...In this work,we apply an efficient analytical algorithm namely homotopy perturbation Sumudu transform method(HPSTM)to find the exact and approximate solutions of linear and nonlinear time-fractional regularized long wave(RLW)equations.The RLW equations describe the nature of ion acoustic waves in plasma and shallow water waves in oceans.The derived results are very significant and imperative for explaining various physical phenomenons.The suggested method basically demonstrates how two efficient techniques,the Sumudu transform scheme and the homotopy perturbation technique can be integrated and applied to find exact and approximate solutions of linear and nonlinear time-fractional RLW equations.The nonlinear expressions can be simply managed by application of He’s polynomials.The result shows that the HPSTM is very powerful,efficient,and simple and it eliminates the round-off errors.It has been observed that the proposed technique can be widely employed to examine other real world problems.展开更多
Subject Code:D06With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Chen Liqi(陈立奇)from the Key Laboratory of Global Chang and Marine Atmosph...Subject Code:D06With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Chen Liqi(陈立奇)from the Key Laboratory of Global Chang and Marine Atmospheric Chemistry(GCMAC)of State Oceanic Administration of China(SOA),Third Institute展开更多
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
文摘Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of continents may generate enormous force on continents. Continents are physically fixed on the top of the lithosphere that has been already broken into individual plates, this attachment enables the force to be laterally transferred to the lithospheric plates. In this study, we combine the force and the existing plate driving forces (i.e., ridge push, slab pull, collisional, and shearing) to account for plate motion. We show that the modelled movements for the South American, African, North American, Eurasian, Australian, Pacific plates are well agreement with the observed movements in both speed and azimuth, with a Root Mean Square Error (RMSE) of the modelled speed against the observed speed of 0.91, 3.76, 2.77, 2.31, 7.43, and 1.95 mm/yr, respectively.
基金Supported by the National Natural Science Foundation of China,NSFC(Nos.41371346,41271375)the Doctoral Fund of Ministry of Education of China(No.20120076110009)
文摘The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.
基金DST-SERB(Govt.of India)for the National Post Doctoral Fellowship(Reference no.PDF/2016/002087)
文摘To promote long-term studies on the distribution and diversity of marine zooplankton in Indian seas,a comprehensive review has been carried out based on the available literature.Zooplankton studies in Indian waters started in the early 1900 s,and a plethora of literature has accumulated dealing with various aspects of zooplankton,especially from the Bay of Bengal,Arabian Sea and their associated estuaries and backwaters.From this review,a comprehensive description is offered on the species composition and distribution of zooplankton in the Indian Seas.Emphasis is given to reflect the existing knowledge on the variations in zooplankton species composition in the Bay of Bengal and Arabian Sea.Copepods emerge as the most dominant component in all of these marine waters,as is the case worldwide.Copepods are more diverse in the Bay of Bengal than in Arabian Sea.
基金The Public Science and Technology Research Funds Projects of Ocean in China under contract Nos 201005008 and201005009the National Natural Science Foundation of China under contract No.41206112
文摘The ecosystem-based management of nearshore waters requires integrated assessment of ocean health and scientific guidance on artificial regulations to promote sustainable development. Quantitative approaches were developed in this paper to assess present and near-term ocean health based on ecosystem services. Results of the case study in the Laizhou Bay of China showed that the index score of ocean health was 0.785 6 out of 1.0 at present and was expected to range from 0.555 1 to 0.804 1 in the near-term future depending on different intensities of artificial regulation of negative pressures. Specifically, the results of ocean health at present mainly indicated that cultural services and provisioning services performed essentially perfectly while supporting services and regulating services functioned less well. It can be concluded that this nearshore ecosystem would partially lose supporting and regulating services in the near-term future if the increasing pressures were not wellregulated but that all of these categories of ecosystem services could be slightly improved if the negative pressures were fully controlled. Additionally, it is recommended that publicity and education on ecosystem services especially on cultural services and regulating services should be further strengthened. The analytical process and resulting quantification provide flexible tools to guide future development of regulations so as to facilitate ecosystem-based management in the coastal zone.
文摘Global Positioning System (GPS) has been widely used to estimate the total zenith tropo- spheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and at- mospheric research as a continuous and all-weather technique. However, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models of inland seas in Turkey. In this paper, GPS data from Jan. 1, 2010 to Dec. 31, 2011 are processed using GAMIT/GLOBK at four co-located GPS stations (ISTN, ERZR, SAMN, and IZMI) with Radiosonde from the Turkish Met-Office together with several nearby IGS stations. Four widely used ocean tide models are adopted to evaluate their effects on GPS-estimated PWV, such as IERS recommended FES2004, NAO99b, CSR4.0 and GOT00. Five different strategies are taken without ocean tide model and with four ocean tide models, respectively, which are used to evaluate ocean tide models effects on GPS-estimated PWV through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the pre- cipitable water vapour at stations near coasts. The ocean tide model FES2004 gave the best results when compared to Radiosonde with +2.12 mm in PWV at stations near coastline. While other ocean tides models agree each other at millimeter level in PWV. However, at inland GPS stations, ocean tide models have less effect on GPS-estimated PWV.
文摘For the supply of fish and shellfish to consumers in fresh condition, clean handling after catch from the sea is essential. According to HACCP (Hazard Analysis and Critical Control Points), it is important to meet such requirement by keeping fish and shellfish under a certain low temperature and clean conditions after catching. The deep ocean water (DOW) characterized by low temperature and cleanliness has been chosen for fish and shellfish handlings, particularly for salmon, cod, and sea urchin in Town 'Rausu' in Hokkaido, Japan. DOW below 2.9℃ of an amount of nearly 5 000 m^3 is planned to be pumped up every day from a depth of about 350 m, and temporarily stored in a large simulated tank on land. DOW is then supplied to fish boats through hydrants distributed throughout the harbor and used for keeping salmon in clean and cold conditions. Ice made from DOW is also used for lowering temperature if necessary. DOW and ice made from DOW are also used during the transportation of fish and shellfish. The entire system is scheduled to be completed by the summer of 2005.
基金The National Natural Science Foundation of China under contract Nos 41276011 and 41221063the Research Project of Chinese Ministry of Education under contract No.113041Athe Global Change and Air-Sea Interaction under contract under contract No.GASI-03-01-01-05
文摘The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation (SODA) outputs in the period of 1950-2008. The subduction rate census for potential density classes showed a peak corresponding to Indian Ocean subtropical mode water (IOSTMW) in the southwestern part of the South Indian Ocean subtropical gyre. The deeper mixed layer depth, the sharper mixed-layer fronts and the associated relatively faster circulation in the present climatology resulted in a larger lateral induction, which primarily dominants the IOSTMW subduction rate, while with only minor contribution from vertical pumping. Without loss of generality, through careful analysis of the water characteristics in the layer of minimum vertical temperature gradient (LMVTG), the authors suggest that the IOSTMW was identified as a thermostad, with a lateral minimum of low potential vorticity (PV, less than 200× 10^-12 m^-1·s^-1) and a low dT/dz (less than 1.5℃/(100 m)). The IOSTMW within the South Indian Ocean subtropical gyre distributed in the region approximately from 25° to 50° E and from 30° to 39°S. Additionally, the average characteristics (temperature, salinity, potential density) of the mode water were estimated about (16.38 ± 0.29)℃, (35.46 ±0.04), (26.02 ±0.04) ae over the past 60 years.
文摘The effects ofpH, dissolved ion content and relative water velocity on the release rate of an antifouling agent, cuprous oxide, from ships' hull paint have been investigated by rotating cylinder tests. Additionally, test paint panels were attached to a vessel and recovered after a certain period of voyage for the validation of the laboratory tests. In the initial period, the release rates are influenced by pH, dissolved ion content and water velocity, but once after a certain period of test, those effects become less significant. These phenomena can be explained when the paint film is fresh, the rate is controlled by chemical reaction, the surface and/or diffusion layer in the water phase governs the rate. After the antifouling substance in the paint film leached out from the near-surface region, a diffused layer (leached layer), that has little antifouling agent remained, is formed at the surface of the coating, and the diffusion in that layer can be a rate-determining process. The development of the leached layer is affected by a balance between the leaching rate of the antifouling ingredient and paint resin determined by the chemical properties and speed of the water. Thus, the leaching rates of antifouling agents are affected by the history of the paint in the water.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772180)the State Key Laboratory of Ocean Engineering of China(Grant No.1503)
文摘A necessary big step up in the modern water wave theories and their widespread application in ocean engineering is how to obtain 6-wave resonance conditions and to prove it. In the light of the existing forms and characteristics of 3-wave, 4-wave and 5-wave resonance conditions, the 6-wave resonance conditions are proposed and proved for currently a maximum wave-wave resonance interactions of the ocean surface gravity waves in deep water, which will be indispensable to both the Kolmogorov spectrum of the corresponding universal wave turbulence and a synthetic 4-5-6-wave resonant model for the ocean surface gravity waves.
文摘The spatio-temporal analysis of the performance of the March to May</span><span style="font-family:""> (MAM) <span>2020 rainfall and its societal implications to Northern Coastal Tanzania</span> (NCT) including Zanzibar was investigated. The uniqueness of the October to December, 2019 (OND) rainfall and the extension of the January to February, 2020 rainfall in Zanzibar which coincided with MAM 2020 rainfall was among the issues which prolonged MAM 2020 rainfall in NCT and Zanzibar. The National Center for Environmental Prediction (NCEP) in collaboration with National Center for Atmospheric Research (NCAR)</span><span style="font-family:"">.</span><span style="font-family:""> Reanalysis 1 datasets of <i>u</i> (zonal)</span><span style="font-family:""> </span><span style="font-family:"">and <i>v</i> (meridional)</span><span style="font-family:""> </span><span style="font-family:"">winds</span><span style="font-family:"">,</span><span style="font-family:""> sea surface temperatures anomalies, relative humidity, amount of precipitable water and ocean net flux were</span><span style="font-family:""><span style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-attachment:initial;background-origin:initial;background-clip:initial;"> </span></span><span style="background-color:;"></span><span style="font-family:""><span style="background:yellow;"></span><span>analyzed. Other datasets include the Tanzania Meteorological Authority (TMA) observed rainfall</span> records</span><span style="font-family:"">,</span><span style="font-family:""> maximum and minimum temperature</span><span style="font-family:"">s</span><span style="font-family:"">. Moreover, <span>TMA and Intergovernmental Climate Prediction and Analysis Cente</span>r (ICPAC)</span><span style="font-family:"">.</span><span style="font-family:""> MAM 2020 rainfall and temperature forecast reports were interpreted. Gridded and observed datasets were calculated into monthly and seasonal averages. As for observed data, long</span><span style="font-family:"">-</span><span style="font-family:"">term monthly and MAM percentage changes were calculated. Besides, </span><span style="font-family:"">the </span><span style="font-family:"">correlation between rainfall anomalies with an area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> for defined regions and stations in Zanzibar w</span><span style="font-family:"">as</span><span style="font-family:""> performed. Lastly, the calculated monthly and seasonal rainfall was compared to MAM periods of 2016, 2017, 2018 and 2019. Results revealed that consecutive five MAM seasonal rainfall was among the highest ones in records with that of 2020 being exceptional. These MAM seasons had percentage contribution ranged from 68% - 212%, 150% - 304%, 22% - 163% and 57% - 170% for stations in Zanzibar and 130% - 230%, 57% - 168% and 230% - 706% for NCT station, respectively. Compared to previous MAM seasons of 2016-2019, MAM 2020 rainfall season was spatially well distributed in our study area with rainfall rang</span><span style="font-family:"">ing</span><span style="font-family:""> from 1200 to 2100 mm and up to 900 in most Zanzibar and NCT stations. Indeed, the study revealed that the observed highest rainfall and flooding was enhanced by wet seasons of MAM 2019, OND 2019 and DFJ (2019-2020). Other dynamics which accelerated MAM 2020 rainfall were the higher SST<sub>A</sub> ranged f<span>rom 0.5<span style="white-space:nowrap;">°</span>C - 1.5<span style="white-space:nowrap;">°</span>C and 1.5<span style="white-space:nowrap;">°</span>C - 2.5<span style="white-space:nowrap;">°</span>C over Southwestern Indian Ocean </span>(SWIO) and coastal Tanzania</span><span style="font-family:""> and</span><span style="font-family:""> the increased trend of area</span><span style="font-family:"">-</span><span style="font-family:"">averaged SST<sub>A</sub> on various SWIO blocks. </span><span style="font-family:"">Besides,</span><span style="font-family:""> parameters including Rhum, PWR and wind regimes were supporting the MAM 2020 rainfall. The socio-economic implications of these rains were strong and spatially well distributed in Zanzibar. For instance, a death toll of about 10 people, </span><span style="font-family:"">a </span><span style="font-family:"">great number of road culverts were washed away, </span><span style="font-family:"">and </span><span style="font-family:"">about 3600 houses </span><span style="font-family:"">were </span><span style="font-family:"">fallen or damaged, leading to </span><span style="font-family:"">a </span><span style="font-family:"">significant number of homeless people. As for NCT</span><span style="font-family:"">,</span><span style="font-family:""> the catastrophes include loss of lives</span><span style="font-family:"">,</span><span style="font-family:""> increased water levels over Lake <span>Victoria leading to flooded islands and re</span></span><span style="font-family:""> </span><span style="font-family:"">allocation of more than 1000 </span><span style="font-family:"">people. In Kenya</span><span style="font-family:"">,</span><span style="font-family:""> more than 116 people died and 40,000 people were displaced. Conclusively</span><span style="font-family:"">,</span><span style="font-family:""> the study has shown the unique<span>ness (<i>i</i>.<i>e</i>.</span></span><span style="font-family:"">,</span><span style="font-family:""> strength and societal implications) of MAM 2020 compared to </span><span style="font-family:"">other seasons;hence more studies on understanding the factors affecting extreme rainfall seasons in East Africa are required</span><span style="font-family:"">.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-04-04 and CHINARE-04-01
文摘On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.
基金This work was supported by the Science and Technology Planning Project of Guangzhou(No.202002030489)Guangdong MEPP Fund[No.GDOE(2019)A23]+1 种基金Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0405)Natural Science Foundation of China(No.32070517,41576124,31772440,31761133001).
文摘As an important component of microzooplankton,ciliates play a key role in matter cycling and energy fow in marine planktonic ecosystems.Studies of planktonic ciliate have been extensive in the South China Sea(SCS)over the last 20 years.Here,we summarize the recent progress on the diversity and distribution of this group in the SCS.This includes that in:(1)the waters covering the intertidal zone of the northern SCS,most studies have focused on taxonomy,with 71 species collected,identifed,and described(with~40%new species);(2)neritic waters distribution patterns have been examined at a regional scale,with ciliates displaying signifcant spatial variations and seasonal dynamics;(3)in oceanic waters,there has been a focus on ciliate distribution in north,centre,and south regions,where mesoscale physical processes play roles in controlling distributions,and noticeable vertical variations occur.More generally,some studies examine the infuences of environment variables on ciliates,and indicate that chlorophyll a concentration is commonly positively correlated with ciliates abundance.In addition,some signifcant fndings are summarized,the limitations of past studies are considered,and recommendations are made for future work on planktonic ciliates in SCS.
文摘In this work,we apply an efficient analytical algorithm namely homotopy perturbation Sumudu transform method(HPSTM)to find the exact and approximate solutions of linear and nonlinear time-fractional regularized long wave(RLW)equations.The RLW equations describe the nature of ion acoustic waves in plasma and shallow water waves in oceans.The derived results are very significant and imperative for explaining various physical phenomenons.The suggested method basically demonstrates how two efficient techniques,the Sumudu transform scheme and the homotopy perturbation technique can be integrated and applied to find exact and approximate solutions of linear and nonlinear time-fractional RLW equations.The nonlinear expressions can be simply managed by application of He’s polynomials.The result shows that the HPSTM is very powerful,efficient,and simple and it eliminates the round-off errors.It has been observed that the proposed technique can be widely employed to examine other real world problems.
文摘Subject Code:D06With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Chen Liqi(陈立奇)from the Key Laboratory of Global Chang and Marine Atmospheric Chemistry(GCMAC)of State Oceanic Administration of China(SOA),Third Institute