In the lamellar liquid crystallization (LLC) phase of NaOL/ OLA/H2O system, the small angle X-ray diffraction measurements show that the oleic add is solubilized in the oil layer at first and men into the amphiphile l...In the lamellar liquid crystallization (LLC) phase of NaOL/ OLA/H2O system, the small angle X-ray diffraction measurements show that the oleic add is solubilized in the oil layer at first and men into the amphiphile layer. The octadiene added is also located partly in the oil layer and partly in the amphiphile layer in the LLC. With the addition of octadiene as cross-linking agent, roe LLC phase of NaOL/OLA/H2O system was polymerized under the initiation of AIBN with the protection of pure nitrogen at 60°C. Most of the double bond absorption of the monomers in IR spectra disappeared after polymerization. The polymerization takes place not only in the middle of the amphiphile layer between the double bonds of NaOL or OLA and those of octadiene, but also in the oil layer of LLC between the double bonds of OLA and those of octadiene. Interlayer spacing measurements on the copolymer proved d values decreased by about 1 - 2 nm compared with those of the corresponding system before the polymerization, indicating a disruption of the ordered structure by the polymerization. The copolymer still has superior surface activity with the critical micellar concentration (CMC) decreased almost to the half of the value for the system before the polymerization.展开更多
Carbonyl compounds, especially polyunsaturated aldehydes (PUAs), are increasingly reported as teratogenic to grazers and deleterious to phytoplankton. While PUAs have been considered to be mainly produced by diatoms a...Carbonyl compounds, especially polyunsaturated aldehydes (PUAs), are increasingly reported as teratogenic to grazers and deleterious to phytoplankton. While PUAs have been considered to be mainly produced by diatoms after cell wounding, little is known about whether microalgae other than diatoms, particularly harmful algal bloom (HAB)-forming species, produce carbonyl compounds. In this study, we analyzed the carbonyl compounds from eight common HAB-forming species ( Akashiwo sanguinea , Karenia mikimotoi , Karlodinium venefi cum , Margalefi dinium polykrikoides , Prorocentrum donghaiense , P . minimum , Scrippsiella trochoidea , and Heterosigma akashiwo ) using gas chromatography-mass spectrometry in full scan and selected ion monitoring (SIM) modes. Our results show a ubiquitous presence of carbonyl compounds in both dissolved and particulate forms in all species we examined. In the full scan mode, 133 chromatographic peaks were detected from 51 samples altogether. Both the varieties of carbonyl compounds and their quantities were algal species dependent, although most of the carbonyl compounds could not be fully identifi ed according to the mass spectral database only due to the unavailability of enough standards for all analytes. Aided with nine standards in SIM mode, we further identifi ed and quantifi ed all nine aldehydes (2-methyl-2-pentenal, trans-2-nonenal, cis-6-nonenal, 2,6-dimethyl-5-heptenal, trans-2-hexenal, trans-2- decenal, 2,4-heptadienal, trans-trans-2,4-octadienal, and trans-trans-2,4-decadienal). Four of these nine aldehydes were detected in particulate form, which confi rmed that trans-2-nonenal could be produced by K . mikimotoi , Karl . venefi cum , P . donghaiense , P . minimum , S . trochoidea , and H . akashiwo , 2,4-heptadienal and trans-trans-2,4-decadienal by A . sanguinea , M . polykrikoides , and S . trochoidea , and trans, trans-2,4- octadienal by S . trochoidea , respectively. We proved that some dinofl agellate and raphidophyte species could contribute to the pool of carbonyl compounds including PUAs in a marine ecosystem. Some carbonyl compounds, particularly those in high cell quota and/or dissolved concentration, may be related to fi shkilling or allelopathy which needs further identifi cation and quantifi cation.展开更多
基金Project (No. 29733110) supported by the National Natural Science Foundation of China.
文摘In the lamellar liquid crystallization (LLC) phase of NaOL/ OLA/H2O system, the small angle X-ray diffraction measurements show that the oleic add is solubilized in the oil layer at first and men into the amphiphile layer. The octadiene added is also located partly in the oil layer and partly in the amphiphile layer in the LLC. With the addition of octadiene as cross-linking agent, roe LLC phase of NaOL/OLA/H2O system was polymerized under the initiation of AIBN with the protection of pure nitrogen at 60°C. Most of the double bond absorption of the monomers in IR spectra disappeared after polymerization. The polymerization takes place not only in the middle of the amphiphile layer between the double bonds of NaOL or OLA and those of octadiene, but also in the oil layer of LLC between the double bonds of OLA and those of octadiene. Interlayer spacing measurements on the copolymer proved d values decreased by about 1 - 2 nm compared with those of the corresponding system before the polymerization, indicating a disruption of the ordered structure by the polymerization. The copolymer still has superior surface activity with the critical micellar concentration (CMC) decreased almost to the half of the value for the system before the polymerization.
基金Supported by the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences(No.U1606404)the National Natural Science Foundation of China(Nos.41476142,61533011,41606126,41506143)+1 种基金the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ02)the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science,and the Qingdao National Laboratory for Marine Science and Technology(No.LMEES-CTSP-2018-1)
文摘Carbonyl compounds, especially polyunsaturated aldehydes (PUAs), are increasingly reported as teratogenic to grazers and deleterious to phytoplankton. While PUAs have been considered to be mainly produced by diatoms after cell wounding, little is known about whether microalgae other than diatoms, particularly harmful algal bloom (HAB)-forming species, produce carbonyl compounds. In this study, we analyzed the carbonyl compounds from eight common HAB-forming species ( Akashiwo sanguinea , Karenia mikimotoi , Karlodinium venefi cum , Margalefi dinium polykrikoides , Prorocentrum donghaiense , P . minimum , Scrippsiella trochoidea , and Heterosigma akashiwo ) using gas chromatography-mass spectrometry in full scan and selected ion monitoring (SIM) modes. Our results show a ubiquitous presence of carbonyl compounds in both dissolved and particulate forms in all species we examined. In the full scan mode, 133 chromatographic peaks were detected from 51 samples altogether. Both the varieties of carbonyl compounds and their quantities were algal species dependent, although most of the carbonyl compounds could not be fully identifi ed according to the mass spectral database only due to the unavailability of enough standards for all analytes. Aided with nine standards in SIM mode, we further identifi ed and quantifi ed all nine aldehydes (2-methyl-2-pentenal, trans-2-nonenal, cis-6-nonenal, 2,6-dimethyl-5-heptenal, trans-2-hexenal, trans-2- decenal, 2,4-heptadienal, trans-trans-2,4-octadienal, and trans-trans-2,4-decadienal). Four of these nine aldehydes were detected in particulate form, which confi rmed that trans-2-nonenal could be produced by K . mikimotoi , Karl . venefi cum , P . donghaiense , P . minimum , S . trochoidea , and H . akashiwo , 2,4-heptadienal and trans-trans-2,4-decadienal by A . sanguinea , M . polykrikoides , and S . trochoidea , and trans, trans-2,4- octadienal by S . trochoidea , respectively. We proved that some dinofl agellate and raphidophyte species could contribute to the pool of carbonyl compounds including PUAs in a marine ecosystem. Some carbonyl compounds, particularly those in high cell quota and/or dissolved concentration, may be related to fi shkilling or allelopathy which needs further identifi cation and quantifi cation.